Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles

Surrounding environment, excess charge and size affect the Fermi level of the electrons in nanoparticles, having a significant influence on their properties.

[1]  Yuebing Zheng,et al.  Effects of geometry and composition on charge-induced plasmonic shifts in gold nanoparticles , 2008 .

[2]  A. Henglein Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects , 1987, Electrochemistry II.

[3]  Micheál D. Scanlon,et al.  Gold metal liquid-like droplets. , 2014, ACS nano.

[4]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[5]  Morgan J. Anderson,et al.  Electrochemical detection of insulating beads at subattomolar concentration via magnetic enrichment in a microfluidic device. , 2014, Analytical chemistry.

[6]  C. Landes,et al.  Single-Particle Spectroscopy Reveals Heterogeneity in Electrochemical Tuning of the Localized Surface Plasmon , 2014, The journal of physical chemistry. B.

[7]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[8]  Yuyuan Tian,et al.  Plasmonic imaging of electrochemical oxidation of single nanoparticles. , 2014, Journal of the American Chemical Society.

[9]  Paul Mulvaney,et al.  Spectroelectrochemistry of colloidal silver , 1997 .

[10]  K. Hansen,et al.  Non-jellium scaling of metal cluster ionization energies and electron affinities , 2010 .

[11]  R. Compton,et al.  Particle-impact nanoelectrochemistry: a Fickian model for nanoparticle transport , 2012 .

[12]  A theoretical model for digestive ripening , 2007 .

[13]  H. Girault,et al.  Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters. , 2006, The journal of physical chemistry. B.

[14]  R. Compton,et al.  Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. , 2012, Chemical communications.

[15]  F. Crespilho,et al.  Single microparticle applied in magnetic-switchable electrochemistry , 2013 .

[16]  C. Campbell,et al.  Cellular redox potential and the biomolecular electrochemical series: a systems hypothesis. , 2012, Free radical biology & medicine.

[17]  J. Cervera,et al.  Electrical fluctuations in monolayer-protected metal nanoclusters , 2008 .

[18]  J. Ziegler,et al.  On the Unusual Electrochemical Stability of Nanofabricated Copper Clusters , 2000 .

[19]  Yu Chen,et al.  Two-dimensional graphene analogues for biomedical applications. , 2015, Chemical Society reviews.

[20]  Wei Chen,et al.  Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. , 2012, Chemical Society reviews.

[21]  Albert A Koelmans,et al.  Potential scenarios for nanomaterial release and subsequent alteration in the environment , 2012, Environmental toxicology and chemistry.

[22]  R. Murray,et al.  Temperature-dependent quantized double layer charging of monolayer-protected gold clusters. , 2003, Analytical chemistry.

[23]  W. Plieth Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering , 1982 .

[24]  P. Kamat,et al.  Photoinduced electron charge and discharge of graphene–ZnO nanoparticle assembly , 2013 .

[25]  A. Henglein,et al.  SURFACE-CHEMISTRY OF COLLOIDAL SILVER IN AQUEOUS-SOLUTION - OBSERVATIONS ON CHEMISORPTION AND REACTIVITY , 1991 .

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[28]  G. Ceder,et al.  Electrochemical stability of nanometer-scale Pt particles in acidic environments. , 2010, Journal of the American Chemical Society.

[29]  P. Stroeve,et al.  Toxicity of nanomaterials. , 2012, Chemical Society reviews.

[30]  Micheál D. Scanlon,et al.  Conductive gold nanoparticle mirrors at liquid/liquid interfaces. , 2013, ACS nano.

[31]  C. Friesen,et al.  Electrochemical stability of elemental metal nanoparticles. , 2010, Journal of the American Chemical Society.

[32]  Jean-No € el Chazalviel,et al.  On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. , 2011, Journal of the American Chemical Society.

[33]  E. Wolf,et al.  Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration , 2003 .

[34]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[35]  F. Stellacci,et al.  A general mechanism for intracellular toxicity of metal-containing nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h Click here for additional data file. , 2014, Nanoscale.

[36]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[37]  David A. Weitz,et al.  Colloidal aggregation revisited: New insights based on fractal structure and surface-enhanced Raman scattering , 1985 .

[38]  A. Henglein Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition , 1993 .

[39]  B. Hayden,et al.  Particle size and support effects in electrocatalysis. , 2013, Accounts of chemical research.

[40]  R. Parsons,et al.  Comments on the thermodynamics of solid electrodes , 1998 .

[41]  Paul Mulvaney,et al.  Electrochemical charging of single gold nanorods. , 2009, Journal of the American Chemical Society.

[42]  H. Girault Analytical and Physical Electrochemistry , 2004 .

[43]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[44]  Stanley C. S. Lai,et al.  Landing and catalytic characterization of individual nanoparticles on electrode surfaces. , 2012, Journal of the American Chemical Society.

[45]  N. V. Rees Electrochemical insight from nanoparticle collisions with electrodes: A mini-review , 2014 .

[46]  A. Henglein,et al.  Electrochemistry of multilayer colloids : preparation and absorption spectrum of gold-coated silver particles , 1993 .

[47]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[48]  H. Girault,et al.  Absolute standard redox potential of monolayer-protected gold nanoclusters. , 2005, The journal of physical chemistry. B.

[49]  A. Bard,et al.  Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. , 2010, Journal of the American Chemical Society.

[50]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[51]  A. Bard,et al.  Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. , 2014, Journal of the American Chemical Society.

[52]  P. Mulvaney,et al.  Spectroelectrochemistry of Silver Deposition on Single Gold Nanocrystals. , 2014, The journal of physical chemistry letters.

[53]  R. Compton,et al.  Nanoparticle–electrode collision studies: Brownian motion and the timescale of nanoparticle oxidation , 2012 .

[54]  M. Pumera Impact electrochemistry: measuring individual nanoparticles. , 2014, ACS nano.

[55]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.

[56]  A. Yu,et al.  Silver nanoplates: a highly sensitive material toward inorganic anions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[57]  Olga S. Ivanova,et al.  Size-dependent electrochemical oxidation of silver nanoparticles. , 2010, Journal of the American Chemical Society.

[58]  Paul Mulvaney,et al.  Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging , 2006 .

[59]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[60]  Dan Wang,et al.  Ion transfer coupled discrete charging of immobilised gold nanoclusters in polar organic solvents , 2011 .

[61]  Ken Donaldson,et al.  Monitoring intracellular redox potential changes using SERS nanosensors. , 2012, ACS nano.

[62]  F. Zamborini,et al.  Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. , 2010, Analytical chemistry.

[63]  A. Bard,et al.  Catalytic water reduction at colloidal metal "microelectrodes". 2. Theory and experiment , 1981 .

[64]  D. Fermín,et al.  Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. , 2011, Physical chemistry chemical physics : PCCP.

[65]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[66]  R. Compton,et al.  Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[67]  A. Bard,et al.  Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode. , 2012, Journal of the American Chemical Society.

[68]  R. Murray,et al.  Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. , 2005, Analytical chemistry.

[69]  S. Hałas Ionization potential of large metallic clusters: explanation for the electrostatic paradox , 2003 .

[70]  R. Gust,et al.  MEKC as a powerful growing analytical technique , 2011, Electrophoresis.

[71]  H. Girault,et al.  Reversible voltage-induced assembly of au nanoparticles at liquid/liquid interfaces. , 2004, Journal of the American Chemical Society.

[72]  R. Penner,et al.  Subnanometer Silver Clusters Exhibiting Unexpected Electrochemical Metastability on Graphite , 2000 .

[73]  A. Henglein,et al.  Reduction of palladium (II) in aqueous solution: stabilization and reactions of an intermediate cluster and palladium colloid formation , 1992 .

[74]  E. Leiva,et al.  Generation of palladium clusters on Au(111) electrodes: Experiments and simulations , 2002 .

[75]  A. Henglein The Reactivity of Silver Atoms in Aqueous Solutions (A γ‐Radiolysis Study) , 1977 .

[76]  R. Compton,et al.  The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. , 2012, Physical chemistry chemical physics : PCCP.

[77]  B. Su,et al.  Dependence of electrochemical charging of gold nanoparticle monolayer films on counterion proximity , 2013 .

[78]  Andrew G. Glen,et al.  APPL , 2001 .

[79]  Xiaoyin Xiao,et al.  Current transients in single nanoparticle collision events. , 2008, Journal of the American Chemical Society.

[80]  P. Kamat,et al.  Electron transfer between methyl viologen radicals and graphene oxide: Reduction, electron storage and discharge , 2011 .

[81]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[82]  A. Henglein,et al.  Surface chemistry of colloidal gold: Deposition and reoxidation of Pb, Cd, and Tl , 1994 .

[83]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[84]  S. Mafe,et al.  Monolayer-Protected Metallic Nanoparticles: Limitations of the Concentric Sphere Capacitor Model , 2007 .

[85]  D. A. Robinson,et al.  Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes. , 2014, ACS nano.

[86]  M. J. Weaver,et al.  Molecular capacitance: sequential electron-transfer energetics for solution-phase metallic clusters in relation to gas-phase clusters and analogous interfaces , 1993 .

[87]  Christine D. Keating,et al.  Two-dimensional arrays of colloidal gold particles : A flexible approach to macroscopic metal surfaces , 1996 .

[88]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[89]  A. Henglein,et al.  Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate , 1993 .

[90]  K. Kontturi,et al.  Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. , 2003, Journal of the American Chemical Society.

[91]  P. Kamat,et al.  Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. , 2011, ACS nano.

[92]  Richard G. Compton,et al.  Nanoparticle–electrode collision processes: The electroplating of bulk cadmium on impacting silver nanoparticles , 2011 .

[93]  R. Compton,et al.  The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[94]  F. Zamborini,et al.  Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. , 2012, Journal of the American Chemical Society.

[95]  Morgan J. Anderson,et al.  Single nanoparticle collisions at microfluidic microband electrodes: the effect of electrode material and mass transfer. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[96]  R. Murray,et al.  Using Electrons Stored on Quantized Capacitors in Electron Transfer Reactions , 1999 .

[97]  Stanley C. S. Lai,et al.  Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. , 2011, Journal of the American Chemical Society.

[98]  B. Grzybowski,et al.  Plasmoelectronics: coupling plasmonic excitation with electron flow. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[99]  C. Geddes,et al.  Plasmonics , 2018, An Introduction to Metamaterials and Nanophotonics.

[100]  Anusorn Kongkanand,et al.  Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. , 2007, ACS nano.

[101]  Evan L. Runnerstrom,et al.  Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.

[102]  Scott N. Thorgaard,et al.  Single particle detection by area amplification: single wall carbon nanotube attachment to a nanoelectrode. , 2013, Journal of the American Chemical Society.

[103]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[104]  R. Compton,et al.  Nanoparticle-electrode impacts: the oxidation of copper nanoparticles has slow kinetics. , 2012, Physical chemistry chemical physics : PCCP.

[105]  H. Weinberg,et al.  Evaluating engineered nanoparticles in natural waters , 2011 .

[106]  Stanley C. S. Lai,et al.  Electrochemistry of nanoparticles. , 2014, Angewandte Chemie.

[107]  R. Compton,et al.  Particle Size and Surface Coverage Effects in the Stripping Voltammetry of Silver Nanoparticles: Theory and Experiment , 2008 .

[108]  Stephan Link,et al.  Optical characterization of single plasmonic nanoparticles. , 2015, Chemical Society reviews.

[109]  P. Mulvaney,et al.  Electro-optical shifts in silver nanoparticle films , 2001 .

[110]  R. Murray,et al.  Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters , 2000 .

[111]  Xiaoyin Xiao,et al.  Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. , 2007, Journal of the American Chemical Society.

[112]  Paul Mulvaney,et al.  Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. , 2008, Nature nanotechnology.

[113]  Charles M. Lieber,et al.  Nanomaterials for Neural Interfaces , 2009 .

[114]  Gordon Chambers,et al.  Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. , 2012, Toxicology in vitro : an international journal published in association with BIBRA.

[115]  J. Ramsden,et al.  Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems , 1982 .

[116]  Gregory V Lowry,et al.  Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. , 2013, Environmental science & technology.

[117]  Yang Yun-feng,et al.  Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment , 2014 .