Guiding the self-organization of random Boolean networks

Random Boolean networks (RBNs) are models of genetic regulatory networks. It is useful to describe RBNs as self-organizing systems to study how changes in the nodes and connections affect the global network dynamics. This article reviews eight different methods for guiding the self-organization of RBNs. In particular, the article is focused on guiding RBNs toward the critical dynamical regime, which is near the phase transition between the ordered and dynamical phases. The properties and advantages of the critical regime for life, computation, adaptability, evolvability, and robustness are reviewed. The guidance methods of RBNs can be used for engineering systems with the features of the critical regime, as well as for studying how natural selection evolved living systems, which are also critical.

[1]  Andrew Wuensche,et al.  A model of transcriptional regulatory networks based on biases in the observed regulation rules , 2002, Complex..

[2]  M. Aldana Boolean dynamics of networks with scale-free topology , 2003 .

[3]  Albert Y. Zomaya,et al.  The Information Dynamics of Phase Transitions in Random Boolean Networks , 2008, ALIFE.

[4]  S. Kauffman,et al.  Activities and sensitivities in boolean network models. , 2004, Physical review letters.

[5]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[6]  Marc Ebner,et al.  How neutral networks influence evolvability , 2001, Complex..

[7]  Seth Bullock,et al.  Spatial embedding and the structure of complex networks , 2010, Complex..

[8]  J. Pereira-Leal,et al.  Modularity: Understanding the Development and Evolution of Natural Complex Systems , 2006 .

[9]  Michael A. Savageau,et al.  Effects of alternative connectivity on behavior of randomly constructed Boolean networks , 2002 .

[10]  Mikhail Prokopenko,et al.  A Fisher Information Study of Phase Transitions in Random Boolean Networks , 2010, ALIFE.

[11]  M. Tomassini,et al.  Dynamics of Scale-Free Semi-Synchronous Boolean Networks , 2006 .

[12]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[13]  Carlos Gershenson,et al.  Modular Random Boolean Networks , 2010, IEEE Symposium on Artificial Life.

[14]  F. Taylor Cybernetics (or control and communication in the animal and the machine). , 1949 .

[15]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Carlos Gershenson,et al.  Modular Random Boolean Networks1 , 2011, Artificial Life.

[17]  Neil Gershenfeld,et al.  Information In Dynamics , 1992, Workshop on Physics and Computation.

[18]  M. Stern,et al.  Emergence of homeostasis and "noise imprinting" in an evolution model. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Julian Francis Miller,et al.  Neutrality and the Evolvability of Boolean Function Landscape , 2001, EuroGP.

[20]  S. Huang,et al.  Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. , 2000, Experimental cell research.

[21]  W. Ashby,et al.  Principles of the self-organizing dynamic system. , 1947, The Journal of general psychology.

[22]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009, Complex..

[23]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[24]  Axel Bender,et al.  Degeneracy: a design principle for achieving robustness and evolvability. , 2009, Journal of theoretical biology.

[25]  Luc Steels,et al.  Building agents out of autonomous behavior systems , 1995 .

[26]  Mikhail Prokopenko,et al.  Information Dynamics in Small-World Boolean Networks , 2011, Artificial Life.

[27]  Carlos Gershenson,et al.  When Can We Call a System Self-Organizing? , 2003, ECAL.

[28]  Stefano Nolfi,et al.  Emergence of functional modularity in robots , 1998 .

[29]  Carsten Peterson,et al.  Random Boolean network models and the yeast transcriptional network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Maibom Social Systems , 2007 .

[31]  Fred Keijzer Artificial Life XI: Proceedings of the eleventh international conference on the simulation and synthesis of living systems , 2008 .

[32]  Marco Tomassini,et al.  Transient Perturbations on Scale-Free Boolean Networks with Topology Driven Dynamics , 2009, ECAL.

[33]  Carlos Gershenson,et al.  The Role of Redundancy in the Robustness of Random Boolean Networks , 2005, ArXiv.

[34]  P. Cluzel,et al.  A natural class of robust networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[36]  V. Isaeva Self-organization in biological systems , 2012, Biology Bulletin.

[37]  Dietrich Stauffer On forcing functions in Kauffman's random Boolean networks , 1987 .

[38]  Carlos Gershenson,et al.  Design and Control of Self-organizing Systems , 2007 .

[39]  Phil Husbands,et al.  Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems , 2004 .

[40]  S. Kauffman,et al.  Genetic networks with canalyzing Boolean rules are always stable. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[42]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[43]  Peter V. Coveney,et al.  Self-organization: the quest for the origin and evolution of structure. Proceedings of the 2002 Nobel Symposium on self-organization , 2003 .

[44]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[45]  Francis Heylighen,et al.  The Science of Self-Organization and Adaptivity , 1999 .

[46]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[47]  Andrew Wuensche,et al.  Discrete Dynamical Networks and Their Attractor Basins , 1998 .

[48]  Erica Jen,et al.  Robust design : a repertoire of biological, ecological, and engineering case studies , 2005 .

[49]  Alexander Riegler,et al.  Natural or Internal Selection? The Case of Canalization in Complex Evolutionary Systems , 2008, Artificial Life.

[50]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[51]  Luis Mateus Rocha,et al.  The Role of Conceptual Structure in Designing Cellular Automata to Perform Collective Computation , 2008, UC.

[52]  A. Wagner Distributed robustness versus redundancy as causes of mutational robustness. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[53]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[54]  B. Derrida,et al.  Random networks of automata: a simple annealed approximation , 1986 .

[55]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[56]  Carlos Gershenson,et al.  Updating Schemes in Random Boolean Networks: Do They Really Matter? , 2004, ArXiv.

[57]  Diederik Aerts,et al.  Contextual Random Boolean Networks , 2003, ECAL.

[58]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Ricard V. Solé,et al.  Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition , 2008, PLoS Comput. Biol..

[60]  P. Cluzel,et al.  Effects of topology on network evolution , 2006 .

[61]  L. Kadanoff,et al.  Boolean Dynamics with Random Couplings , 2002, nlin/0204062.

[62]  Kasper Stoy,et al.  Artificial Life XII Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems , 2010 .

[63]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[64]  James P. Crutchfield Critical Computation, Phase Transitions, and Hierarchical Learning , 2001 .

[65]  Alan MacLennan,et al.  The artificial life route to artificial intelligence: Building embodied, situated agents , 1996 .

[66]  Pau Fernandez,et al.  The Role of Computation in Complex Regulatory Networks , 2003, q-bio/0311012.

[67]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999, Complex..

[68]  Marco Villani,et al.  On the Dynamics of Scale-Free Boolean Networks , 2003, WIRN.

[69]  H. Von Foerster,et al.  On Self-Organizing Systems and Their Environments , 2003 .

[70]  W. Ross Ashby,et al.  Principles of the Self-Organizing System , 1991 .

[71]  M. Prokopenko Guided self‐organization , 2009, HFSP journal.

[72]  John Skår,et al.  Introduction: Self–organization as an actual theme , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[74]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[75]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[76]  Diego Rasskin-Gutman,et al.  Modularity. Understanding the Development and Evolution of Natural Complex Systems , 2005 .

[77]  R. Watson,et al.  Optimisation in ‘Self-modelling’ Complex Adaptive Systems , 2011 .

[78]  R. Solé,et al.  Lyapunov exponents in random Boolean networks , 1999, adap-org/9907001.

[79]  Ricard V. Solé,et al.  Controlling chaos in random Boolean networks , 1997 .

[80]  M Villani,et al.  Genetic network models and statistical properties of gene expression data in knock-out experiments. , 2004, Journal of theoretical biology.

[81]  B. Drossel,et al.  Evolution of canalizing Boolean networks , 2007, q-bio/0701025.

[82]  John B Rundle,et al.  Self-organized complexity in the physical, biological, and social sciences , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Kauffman,et al.  Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms , 2008, PloS one.

[84]  Adrian Thompson,et al.  Hardware evolution - automatic design of electronic circuits in reconfigurable hardware by artificial evolution , 1999, CPHC/BCS distinguished dissertations.

[85]  Carlos Gershenson,et al.  Introduction to Random Boolean Networks , 2004, ArXiv.

[86]  J. Schnakenberg,et al.  G. Nicolis und I. Prigogine: Self‐Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.–, $ 34.– , 1978 .

[87]  Carlos Gershenson,et al.  Classification of Random Boolean Networks , 2002, ArXiv.

[88]  Ney Lemke,et al.  A numerical investigation of adaptation in populations of random boolean networks , 2001 .

[89]  Ricard V. Solé,et al.  PHASE TRANSITIONS IN RANDOM NETWORKS : SIMPLE ANALYTIC DETERMINATION OF CRITICAL POINTS , 1997 .

[90]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[91]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[92]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2005, Physical review letters.