Discrete states in light-like linear dilaton background

We study the spectrum of bosonic strings in the light-like linear dilaton background and find discrete states. These are physical states which exist only at specific values of momentum. All discrete states except one generate spacetime symmetries. The exceptional discrete state corresponds to constraints which are deformations of conservation laws. The constraints resemble those arising from symmetries, and are equally powerful, suggesting that our notion of symmetry should be generalized.

[1]  C. Chu,et al.  Time-dependent AdS/CFT duality II: holographic reconstruction of bulk metric and possible resolution of singularity , 2007, 0710.2640.

[2]  D. Green,et al.  Dimensional Duality , 2007, 0705.0550.

[3]  J. McGreevy,et al.  New dimensions for wound strings: The modular transformation of geometry to topology , 2006, hep-th/0612121.

[4]  E. Silverstein,et al.  Supercritical stability, transitions, and (pseudo)tachyons , 2006, Physical Review D.

[5]  S. Trivedi,et al.  Cosmologies with null singularities and their gauge theory duals , 2006, hep-th/0610053.

[6]  N. Ohta,et al.  Matrix string description of cosmic singularities in a class of time-dependent solutions , 2006, hep-th/0603215.

[7]  Feng-Li Lin,et al.  Supersymmetric null-like holographic cosmologies , 2006, hep-th/0602124.

[8]  S. Trivedi,et al.  Time-dependent cosmologies and their duals , 2006, hep-th/0602107.

[9]  C. Chu,et al.  Time-dependent AdS/CFT duality and null singularity , 2006, hep-th/0602054.

[10]  I. Rothstein,et al.  Asymptotics of d-dimensional Kaluza-Klein black holes: Beyond the Newtonian approximation , 2006, hep-th/0602016.

[11]  B. Craps,et al.  Effective Dynamics of the Matrix Big Bang , 2006, hep-th/0601062.

[12]  Bin Chen The time-dependent supersymmetric configurations in M-theory and matrix models , 2005, hep-th/0508191.

[13]  H. Kodama,et al.  Time-dependent solutions with null Killing spinor in M-theory and superstrings , 2005, hep-th/0509173.

[14]  Wei Song,et al.  Shock waves and cosmological matrix models , 2005, hep-th/0507185.

[15]  Miao Li A class of cosmological matrix models , 2005, hep-th/0506260.

[16]  B. Craps,et al.  A matrix big bang , 2005, hep-th/0506180.

[17]  Y. Nakayama Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.

[18]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Polchinski String Theory: Calabi–Yau compactification , 1998 .

[20]  J. Polchinski An introduction to the bosonic string , 1998 .

[21]  G. Moore Symmetries and symmetry-breaking in string theory , 1993, hep-th/9308052.

[22]  G. Moore Finite in All Directions , 1993, hep-th/9305139.

[23]  A. Polyakov,et al.  INTERACTION OF DISCRETE STATES IN TWO-DIMENSIONAL STRING THEORY , 1991, hep-th/9109032.

[24]  A. Polyakov Self-tuning fields and resonant correlations in 2d-gravity , 1991 .

[25]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[26]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[27]  P. Goddard,et al.  Compatibility of the Dual Pomeron with Unitarity and the Absence of Ghosts in the Dual Resonance Model , 1972 .