Maintaining bridge-connected and biconnected components on-line

We consider the twin problems of maintaining the bridge-connected components and the biconnected components of a dynamic undirected graph. The allowed changes to the graph are vertex and edge insertions. We give an algorithm for each problem. With simple data structures, each algorithm runs inO(n logn +m) time, wheren is the number of vertices andm is the number of operations. We develop a modified version of the dynamic trees of Sleator and Tarjan that is suitable for efficient recursive algorithms, and use it to reduce the running time of the algorithms for both problems toO(mα(m,n)), where α is a functional inverse of Ackermann's function. This time bound is optimal. All of the algorithms useO(n) space.

[1]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[2]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[3]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[4]  Grant Arthur Cheston Incremental algorithms in graph theory. , 1976 .

[5]  Andrew Chi-Chih Yao,et al.  Should Tables Be Sorted? , 1981, JACM.

[6]  Robert E. Tarjan,et al.  A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..

[7]  Shimon Even,et al.  An On-Line Edge-Deletion Problem , 1981, JACM.

[8]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[9]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[10]  Jan van Leeuwen,et al.  Worst-case Analysis of Set Union Algorithms , 1984, JACM.

[11]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[12]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[13]  R. Tarjan Amortized Computational Complexity , 1985 .

[14]  Robert E. Tarjan,et al.  Self-adjusting binary search trees , 1985, JACM.

[15]  Norbert Blum,et al.  On the Single-Operation Worst-Case Time Complexity of the Disjoint Set Union Problem , 1986, SIAM J. Comput..

[16]  Baruch Awerbuch,et al.  New Connectivity and MSF Algorithms for Shuffle-Exchange Network and PRAM , 1987, IEEE Transactions on Computers.

[17]  John H. Reif A Topological Approach to Dynamic Graph Connectivity , 1987, Inf. Process. Lett..

[18]  R. Tamassia Dynamic Data Structures for Two-Dimensional Searching , 1988 .

[19]  Roberto Tamassia,et al.  A Dynamic Data Structure for Planar Graph Embedding (Extended Abstract) , 1988, ICALP.

[20]  Roberto Tamassia,et al.  Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.

[21]  Michael E. Saks,et al.  The cell probe complexity of dynamic data structures , 1989, STOC '89.

[22]  Han La Poutré Lower bounds for the union-find and the split-find problem on pointer machines , 1990, STOC '90.

[23]  Roberto Tamassia,et al.  On-Line Graph Algorithms with SPQR-Trees , 1990, ICALP.

[24]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[25]  Jan van Leeuwen,et al.  Maintenance of 2- and 3-connected components of graphs; Part I: 2- and 3-edge-connected components , 1990 .