Structure and Enumeration of (3+1)-Free Posets

A poset is (3+1)-free if it does not contain the disjoint union of chains of lengths 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.

[1]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[2]  Volker Diekert,et al.  The Book of Traces , 1995 .

[3]  Mark Skandera A Characterization of (3+1)-Free Posets , 2001, J. Comb. Theory, Ser. A.

[4]  Jeffrey B. Remmel,et al.  Enumerating (2+2)-free posets by the number of minimal elements and other statistics , 2011, Discret. Appl. Math..

[5]  Mathieu Guay-Paquet,et al.  A modular relation for the chromatic symmetric functions of (3+1)-free posets , 2013, 1306.2400.

[6]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[7]  Joel Brewster Lewis,et al.  Enumeration of graded (3+1)(3+1)-avoiding posets , 2013, J. Comb. Theory, Ser. A.

[8]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[9]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[10]  Richard P. Stanley,et al.  Graph colorings and related symmetric functions: ideas and applications A description of results, interesting applications, & notable open problems , 1998, Discret. Math..

[11]  Sergey Kitaev,et al.  (2+2)-free Posets, Ascent Sequences and Pattern Avoiding Permutations , 2008, J. Comb. Theory, Ser. A.

[12]  Vesselin Gasharov,et al.  Incomparability graphs of (3 + 1)-free posets are s-positive , 1996, Discret. Math..

[13]  Richard P. Stanley,et al.  On Immanants of Jacobi-Trudi Matrices and Permutations with Restricted Position , 1993, J. Comb. Theory, Ser. A.

[14]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[15]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[16]  Hans Jürgen Prömel,et al.  Counting unlabeled structures , 1987, J. Comb. Theory, Ser. A.

[17]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[18]  Donald E. Knuth,et al.  Inhomogeneous sorting , 1979, International Journal of Computer & Information Sciences.

[19]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[20]  Brian Reed,et al.  Total nonnegativity and (3+1)-free posets , 2003, J. Comb. Theory, Ser. A.

[21]  Béla Bollobás,et al.  Random Graphs , 1985 .

[22]  R. Stanley Enumerative Combinatorics by Richard P. Stanley , 2011 .

[23]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[24]  Yan X. Zhang,et al.  Enumeration of Graded (3 + 1)-Avoiding Posets , 2012 .

[25]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[26]  E. Bender An asymptotic expansion for the coefficients of some formal power series , 1975 .

[27]  Bruce E. Sagan,et al.  Counting s(3+1)-avoiding permutations , 2012, Eur. J. Comb..