Phase-stable swept source OCT angiography in human skin using an akinetic source.

We demonstrate noninvasive structural and microvascular contrast imaging of human skin in vivo, using phase difference swept source OCT angiography (pOCTA). The pOCTA system employs an akinetic, all-semiconductor, highly phase-stable swept laser source which operates at 1340 nm central wavelength, with 37 nm bandwidth (at 0 dB region) and 200 kHz A-scan rate. The phase sensitive detection does not need any external phase stabilizing implementations, due to the outstanding high phase linearity and sweep phase repeatability within 2 mrad. We compare the performance of phase based OCTA to speckle based OCTA for visualizing human vascular networks. pOCTA shows better contrast especially for deeper vascular details as compared to speckle based OCTA. The phase stability of the akinetic source allows the OCTA system to show decent vascular contrast only with 2 B-scans. We compare the performance of using 2 versus 4 B-scans for calculating the vascular contrast. Finally, the performance of a 100 nm bandwidth akinetic laser at 1310 nm is investigated for both OCT and OCTA.

[1]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[2]  Adrian Mariampillai,et al.  Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit , 2012, Biomedical optics express.

[3]  Richard F Spaide,et al.  Optical Coherence Tomography Angiography. , 2015, Retina.

[4]  J. Fujimoto,et al.  Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging , 2015, Journal of Lightwave Technology.

[5]  W. Drexler,et al.  Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. , 2014, Optics express.

[6]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[7]  Kevin Wong,et al.  Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit , 2014, Journal of biomedical optics.

[8]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[9]  J. D. de Boer,et al.  Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. , 2011, Optics Express.

[10]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[11]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[12]  Rainer A. Leitgeb,et al.  Intraand Inter-Frame Differential Doppler Optical Coherence Tomography , 2015 .

[13]  Jun Zhang,et al.  In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. , 2005, Optics express.

[14]  J. Nelson,et al.  Characterization of fluid flow velocity by optical Doppler tomography. , 1995, Optics letters.

[15]  Adrian Gh Podoleanu,et al.  Dual-mode-locking mechanism for an akinetic dispersive ring cavity swept source. , 2015, Optics letters.

[16]  Mohammad Sultan Mahmud,et al.  Review of speckle and phase variance optical coherence tomography to visualize microvascular networks , 2013, Journal of biomedical optics.

[17]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[18]  Jay S Duker,et al.  A review of optical coherence tomography angiography (OCTA) , 2015, International Journal of Retina and Vitreous.

[19]  Angelika Unterhuber,et al.  Optical coherence tomography today: speed, contrast, and multimodality , 2014, Journal of biomedical optics.

[20]  Chen D. Lu,et al.  Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. , 2013, Optics letters.

[21]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[22]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[23]  J. Fujimoto,et al.  IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[24]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[25]  J. Fujimoto,et al.  High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. , 2013, Optics letters.

[26]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[27]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[28]  Zhongping Chen,et al.  Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography , 2001 .

[29]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[30]  S. Yun,et al.  Phase-resolved optical frequency domain imaging. , 2005, Optics express.

[31]  Leopold Schmetterer,et al.  Doppler Optical Coherence Tomography , 2014, Progress in Retinal and Eye Research.

[32]  Christoph Kolbitsch,et al.  Ultra-high-speed volumetric tomography of human retinal blood flow. , 2009, Optics express.

[33]  Wolfgang Drexler,et al.  In situ structural and microangiographic assessment of human skin lesions with high-speed OCT , 2012, Biomedical optics express.

[34]  Theo Lasser,et al.  Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution. , 2006, Optics express.

[35]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.