The type I half-logistic family of distributions

We study general mathematical properties of a new class of continuous distributions with an extra positive parameter called the type I half-logistic family. We present some special models and investigate the asymptotics and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We derive a power series for the quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics are determined. We introduce a bivariate extension of the new family. We discuss the estimation of the model parameters by maximum likelihood and illustrate its potentiality by means of two applications to real data.

[1]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[2]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[3]  Narayanaswamy Balakrishnan,et al.  A General Purpose Approximate Goodness-of-Fit Test , 1995 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  Alan Edelman,et al.  Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.

[6]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[7]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[8]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[9]  Turalay Kenc,et al.  Ox: An Object-Oriented Matrix Language , 1997 .

[10]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[11]  G. Crooks On Measures of Entropy and Information , 2015 .

[12]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[13]  Saralees Nadarajah,et al.  The Kumaraswamy Weibull distribution with application to failure data , 2010, J. Frankl. Inst..

[14]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[15]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[16]  A. Prudnikov,et al.  Integrals and series of special functions , 1983 .

[17]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[18]  H. Akaike A new look at the statistical model identification , 1974 .

[19]  Samuel Kotz,et al.  The Exponentiated Type Distributions , 2006 .

[20]  Saralees Nadarajah,et al.  Closed-form expressions for moments of a class of beta generalized distributions , 2011 .

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[23]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[24]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[27]  R. Cowan A bivariate exponential distribution arising in random geometry , 1987 .

[28]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .