Multiple material additive manufacturing – Part 1: a review

Interest in multifunctional structures made automatically from multiple materials poses a challenge for today's additive manufacturing (AM) technologies; however the ability to process multiple materials is a fundamental advantage to some AM technologies. The capability to fabricate multiple material parts can improve AM technologies by either optimising the mechanical properties of the parts or providing additional functions to the final parts. The objective of this paper is to give an overview on the current state of the art of multiple material AM technologies and their practical applications. In this paper, multiple material AM processes have been classified and the principles of the key processes have been reviewed comprehensively. The advantages and disadvantages of each process, recent progress, challenging technological obstacles, the possible strategies to overcome these barriers, and future trends are also discussed.

[1]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[2]  Sangbae Kim,et al.  Design and fabrication of multi-material structures for bioinspired robots , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Chi Zhou,et al.  Development of a Multi-material Mask-Image-Projection-based Stereolithography for the Fabrication of Digital Materials , 2011 .

[4]  S. Yeates,et al.  Inkjet printing of 3D metal-insulator-metal crossovers , 2008 .

[5]  Dan Qiu,et al.  Void eliminating toolpath for extrusion‐based multi‐material layered manufacturing , 2002 .

[6]  Yicheng Lu,et al.  3‐D photonic bandgap structures in the microwave regime by fused deposition of multimaterials , 2002 .

[7]  Ross J. Friel,et al.  A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite , 2010 .

[8]  Ph. Bertrand,et al.  Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology , 2011 .

[9]  Thomas J. Webster,et al.  Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: From 2D to 3D printed structures , 2011 .

[10]  Cynthia M. Gomes,et al.  Colloidal Processing of Glass–Ceramics for Laminated Object Manufacturing , 2009 .

[11]  Karl R Edminster,et al.  Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. , 2009, Biomaterials.

[12]  Yang Hao,et al.  Fine lattice structures fabricated by extrusion freeforming: Process variables , 2009 .

[13]  Ian Gibson,et al.  Advanced manufacturing technology for medical applications : reverse engineering, software conversion, and rapid prototyping , 2006 .

[14]  Allan J. Lightman,et al.  Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites , 1999 .

[15]  Yih-Lin Cheng,et al.  Development of dynamic mask photolithography system , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[16]  Peter C. Collins,et al.  Direct laser deposition of alloys from elemental powder blends , 2001 .

[17]  Richard Whitaker,et al.  A SYSTEM APPROACH , 1996 .

[18]  Ian M. Hutchings,et al.  Direct Writing Technology Advances and Developments , 2008 .

[19]  Hod Lipson,et al.  Printing Embedded Circuits , 2007 .

[20]  M. J. Edirisinghe,et al.  Solid freeform fabrication of ceramics , 2003 .

[21]  S. Bhatia,et al.  Three-Dimensional Photopatterning of Hydrogels Containing Living Cells , 2002 .

[22]  Jie Sun,et al.  Performance characterization of drop-on-demand micro-dispensing system with multi-printheads , 2010 .

[23]  Jean-Pierre Kruth,et al.  Composites by rapid prototyping technology , 2010 .

[24]  Hiroshi Suzuki,et al.  Inkjet Printing Resolution Study for Multi-Material Rapid Prototyping , 2006 .

[25]  S N Jayasinghe,et al.  Bio-electrosprays: the development of a promising tool for regenerative and therapeutic medicine. , 2007, Biotechnology journal.

[26]  Paulo Jorge Da Silva bartolo,et al.  Virtual Prototyping & Bio Manufacturing in Medical Applications , 2008 .

[27]  Sanjay Kumar Selective laser sintering: A qualitative and objective approach , 2003 .

[28]  A. Khademhosseini,et al.  Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. , 2010, Tissue engineering. Part C, Methods.

[29]  Federica Chiellini,et al.  Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications , 2009, International journal of biomaterials.

[30]  Ryan B. Wicker,et al.  Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs with Encapsulated Cells , 2006, Annals of Biomedical Engineering.

[31]  Ian Gibson,et al.  Composites in rapid prototyping , 2009 .

[32]  Richard P. Chartoff,et al.  Interfacial characteristics of composites fabricated by laminated object manufacturing , 1998 .

[33]  Wei Sun,et al.  Multi‐nozzle deposition for construction of 3D biopolymer tissue scaffolds , 2005 .

[34]  Gregory E. Hilmas,et al.  Investigation of laser sintering for freeform fabrication of zirconium diboride parts , 2012 .

[35]  Sjoerd Haasl,et al.  Layer Manufacturing as a Generic Tool for Microsystem Integration , 2007 .

[36]  John N. DuPont,et al.  Fabrication of functionally graded TiC/Ti composites by Laser Engineered Net Shaping , 2003 .

[37]  John Evans,et al.  Studies on ultrasonic microfeeding of fine powders , 2006 .

[38]  M. Renn,et al.  Printing conformal electronics on 3D structures with Aerosol Jet technology , 2012, 2012 Future of Instrumentation International Workshop (FIIW) Proceedings.

[39]  Debasish Dutta,et al.  A method for the design and fabrication of heterogeneous objects , 2003 .

[40]  Joseph Pegna,et al.  Application of Cementitious Bulk Materials to Site Processed Solid Freeform Construction , 1995 .

[41]  Xiaochun Li,et al.  Experimental and analytical study of ultrasonic micro powder feeding , 2003 .

[42]  Neri Oxman,et al.  Variable property rapid prototyping , 2011 .

[43]  Philip D. Rack,et al.  Chemical Vapor Deposition , 2002 .

[44]  Fuewen Frank Liou Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development , 2007 .

[45]  K. Ikuta,et al.  Multi-polymer microstereolithography for hybrid opto-MEMS , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[46]  James J. Yoo,et al.  Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. , 2013, Biomaterials.

[47]  John Evans,et al.  Acoustic control of powder dispensing in open tubes , 2004 .

[48]  Shanyi Du,et al.  Al2O3 Ceramics Preparation by LOM (Laminated Object Manufacturing) , 2001 .

[49]  L. Bonassar,et al.  Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. , 2013, Macromolecular rapid communications.

[50]  Junfeng Xiao,et al.  Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator , 2010 .

[51]  Kenneth Cooper,et al.  Rapid Prototyping Technology: Selection and Application , 2001 .

[52]  A.M. Dollar,et al.  A robust compliant grasper via shape deposition manufacturing , 2006, IEEE/ASME Transactions on Mechatronics.

[53]  Scott C. Brown,et al.  A three-dimensional osteochondral composite scaffold for articular cartilage repair. , 2002, Biomaterials.

[54]  S. Das Physical Aspects of Process Control in Selective Laser Sintering of Metals , 2003 .

[55]  Shoufeng Yang,et al.  Sintering behaviour of calcium phosphate filaments for use as hard tissue scaffolds , 2008 .

[56]  Giovanni Vozzi,et al.  Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering , 2002 .

[57]  Ho-Chan Kim,et al.  Scheduling and process planning for multiple material stereolithography , 2010 .

[58]  Rashid Bashir,et al.  Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. , 2012, Lab on a chip.

[59]  Paulo Jorge Da Silva bartolo,et al.  Bio-Materials and Prototyping Applications in Medicine , 2008 .

[60]  Tim Caffrey,et al.  Wohlers report 2013 : additive manufacturing and 3D printing state of the industry : annual worldwide progress report , 2013 .

[61]  J Malda,et al.  Bioprinting of hybrid tissue constructs with tailorable mechanical properties , 2011, Biofabrication.

[62]  Matthias Dipl Ing Greul,et al.  Fast, functional prototypes via multiphase jet solidification , 1995 .

[63]  Ahmad Safari,et al.  Fabrication of Electroceramic Components by Layered Manufacturing (LM) , 2003 .

[64]  R. Ascherl,et al.  Rapid Prototyping , 1997, IEEE Robotics & Automation Magazine.

[65]  K. Choy Chemical vapour deposition of coatings , 2003 .

[66]  F. Marga,et al.  Toward engineering functional organ modules by additive manufacturing , 2012, Biofabrication.

[67]  John Evans,et al.  Extrusion freeforming of ceramics through fine nozzles , 2003 .

[68]  Peter Greil,et al.  Preceramic Paper‐Derived Ceramics , 2008 .

[69]  Frank W. Liou,et al.  Laser metal forming processes for rapid prototyping - A review , 2000 .

[70]  Yongnian Yan,et al.  A Novel Osteochondral Scaffold Fabricated via Multi-nozzle Low-temperature Deposition Manufacturing , 2009 .

[71]  Ryan B. Wicker,et al.  Multi-material microstereolithography , 2010 .

[72]  John Evans,et al.  Metering and dispensing of powder; the quest for new solid freeforming techniques , 2007 .

[73]  R. Wicker,et al.  Multiple Material Micro-Fabrication: Extending Stereolithography to Tissue Engineering and Other Novel Applications , 2004 .

[74]  Jake E. Barralet,et al.  3D printing of β-tricalcium phosphate ceramics , 2009 .

[75]  L. Murr,et al.  Multi‐material bonding in ultrasonic consolidation , 2010 .

[76]  Chul-Seung Kim,et al.  Human postural control against external force perturbation applied to the high-back , 2009 .

[77]  A. G. Cooper,et al.  Automated fabrication of complex molded parts using Mold Shape Deposition Manufacturing , 1999 .

[78]  Yu. V. Khlopkov,et al.  Absorptance of powder materials suitable for laser sintering , 2000 .

[79]  Amit Bandyopadhyay,et al.  Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. , 2008, Acta biomaterialia.

[80]  Ryan B. Wicker,et al.  Integrating UC and FDM to create a support materials deposition system , 2009 .

[81]  Pranav Kumar,et al.  Direct‐write deposition of fine powders through miniature hopper‐nozzles for multi‐material solid freeform fabrication , 2004 .

[82]  Paulo Jorge Da Silva bartolo,et al.  Stereolithography: Materials, Processes and Applications , 2011 .

[83]  Brent Stucker,et al.  Minimizing Defects Between Adjacent Foils in Ultrasonically Consolidated Parts , 2010 .

[84]  Ryan Wicker,et al.  Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. , 2010, Acta biomaterialia.

[85]  Valeriy V. Yashchuk,et al.  Production of dry powder clots using a piezoelectric drop generator , 2002 .

[86]  Kenneth Cooper,et al.  Laminated Object Manufacturing , 2001 .

[87]  Brent Stucker,et al.  Process Parameters Optimization for Ultrasonically Consolidated Fiber-Reinforced Metal Matrix Composites , 2006 .

[88]  Brent Stucker,et al.  Additive Manufacturing Technologies: Technology Introduction and Business Implications , 2011 .

[89]  Ulrich S. Schubert,et al.  Inkjet Printing of Polymer Micro‐Arrays and Libraries: Instrumentation, Requirements, and Perspectives , 2003 .

[90]  J. Ciurana,et al.  Biomedical production of implants by additive electro-chemical and physical processes , 2012 .

[91]  Liang Hao,et al.  Evaluation of CO2 and Nd:YAG Lasers for the Selective Laser Sintering of HAPEX® , 2006 .

[92]  P. Bártolo,et al.  Additive manufacturing of tissues and organs , 2012 .

[93]  Takashi Goto,et al.  Chemical Vapor Deposition of Iridium, Platinum, Rhodium and Palladium , 2003 .

[94]  Ahmad Safari,et al.  Processing of advanced electroceramic components by fused deposition technique , 2001 .

[95]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[96]  Y. Wong,et al.  Direct writing of chitosan scaffolds using a robotic system , 2005 .

[97]  D. White Ultrasonic consolidation of aluminum tooling , 2003 .

[98]  B. Stucker,et al.  Structurally Embedded Electrical Systems Using Ultrasonic Consolidation (UC) , 2006 .

[99]  C. Chua,et al.  A practical approach on temperature variation in Selective Laser Melting with a novel heat transfer model , 2009 .

[100]  Leon L. Shaw,et al.  Fabrication of Functionally Graded Materials Via Inkjet Color Printing , 2006 .

[101]  A.M. Dollar,et al.  Embedded Sensors for Biomimetic Robotics via Shape Deposition Manufacturing , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[102]  Fritz B. Prinz,et al.  Shape deposition manufacturing of heterogeneous structures , 1997 .

[103]  Mark R. Cutkosky,et al.  Design by Composition for Layered Manufacturing , 2000 .

[104]  Jane Roberts,et al.  A Practical Approach , 1963 .

[105]  Hod Lipson,et al.  Freeform fabrication of zinc‐air batteries and electromechanical assemblies , 2004 .

[106]  Ryan A. Koppes,et al.  Laser direct writing of combinatorial libraries of idealized cellular constructs : Biomedical applications , 2009 .

[107]  Joseph Cesarano,et al.  A Review of Robocasting Technology , 1998 .

[108]  Li-Hsin Han,et al.  Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering , 2010, Biomedical microdevices.

[109]  Neil Hopkinson,et al.  Rapid manufacturing : an industrial revolution for the digital age , 2006 .

[110]  Stefan Johansson,et al.  Free‐standing silicon microstructures fabricated by laser chemical processing , 1993 .

[111]  P. Greil,et al.  Laminated Object Manufacturing of Preceramic‐Paper‐Derived Si?SiC Composites , 2007 .

[112]  Y.S. Wong,et al.  Development of a drop-on-demand system for multiple material dispensing , 2008, 2008 IEEE International Conference on Automation and Logistics.

[113]  Chee Kai Chua,et al.  Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices. Part 2: Secondary Powder Deposition , 2002 .

[114]  Philippe Renaud,et al.  Microstereolithography: a new process to build complex 3D objects , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[115]  Shuji Matsusaka,et al.  Development of measurement system for powder flowability based on vibrating capillary method , 2009 .

[116]  L. Niklason,et al.  Scaffold-free vascular tissue engineering using bioprinting. , 2009, Biomaterials.

[117]  H. L. Marcus,et al.  Multiple material solid free-form fabrication by selective area laser deposition , 1998 .

[118]  Costas P. Grigoropoulos,et al.  Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication , 2010 .

[119]  H. Seitz,et al.  Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[120]  Robby Ebert,et al.  Laser Micro Sintering – a Versatile Instrument for the Generation of Microparts , 2007 .

[121]  Hod Lipson,et al.  Multi-Material Freeform Fabrication of Active Systems , 2008 .

[122]  P. Bártolo,et al.  Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε‐caprolactone) scaffolds , 2012 .

[123]  Brent Stucker,et al.  Use of ultrasonic consolidation for fabrication of multi‐material structures , 2007 .

[124]  Yongnian Yan,et al.  Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion , 2001 .

[125]  Geoffrey R. Mitchell,et al.  Stereo‐thermal‐lithography: a new principle for rapid prototyping , 2003 .

[126]  Dejun Jing,et al.  Experimental and Numerical Study on the Flow of Fine Powders from Small-Scale Hoppers Applied to SLS Multi-Material Deposition-Part I , 2002 .

[127]  A.C.W. Lau,et al.  Precision extruding deposition and characterization of cellular poly‐ε‐caprolactone tissue scaffolds , 2004 .

[128]  Genci Capi,et al.  Computer-assisted biofabrication: The challenges on manufacturing 3-D biological tissues for tissue and organ engineering , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[129]  K. Lu,et al.  3DP process for fine mesh structure printing , 2008 .

[130]  B. Stucker,et al.  Multi-Material Ultrasonic Consolidation , 2006 .

[131]  Peter Fratzl,et al.  Fabrication and moulding of cellular materials by rapid prototyping , 2004 .

[132]  Takashi Yamanaka,et al.  Generation of three-dimensional micro structure using metal jet , 2000 .

[133]  Hongseok Choi,et al.  Digital Micromirror Device Based Microstereolithography for Micro Structures of Transparent Photopolymer and Nanocomposites , 2003 .

[134]  R. J. Cook,et al.  Dissolution characteristics of extrusion freeformed hydroxyapatite–tricalcium phosphate scaffolds , 2008, Journal of materials science. Materials in medicine.

[135]  John Evans,et al.  Dry powder microfeeding system for solid freeform fabrication , 2006 .

[136]  Mark R. Cutkosky,et al.  Biomimetic Robotic Mechanisms via Shape Deposition Manufacturing , 2000 .

[137]  C. K. Chua,et al.  Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices. Part 1: Space Creation , 2001 .

[138]  Amit Bandyopadhyay,et al.  Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants , 2009, Journal of materials science. Materials in medicine.

[139]  Sung-Hoon Ahn,et al.  Direct metal printing of 3D electrical circuit using rapid prototyping , 2009 .

[140]  Han Tong Loh,et al.  Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system , 2002 .

[141]  C. V. van Blitterswijk,et al.  Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. , 2004, Biomaterials.

[142]  R. Merz,et al.  Shape Deposition Manufacturing of Wearable Computers , 1996 .

[143]  Xiaoyan Zeng,et al.  Direct fabrication of electric components on insulated boards by laser microcladding electronic pastes , 2006, IEEE Transactions on Advanced Packaging.

[144]  Yongnian Yan,et al.  Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[145]  F. Klocke,et al.  Consolidation phenomena in laser and powder-bed based layered manufacturing , 2007 .

[146]  Yang Hao,et al.  Solvent-based paste extrusion solid freeforming , 2010 .

[147]  Rashid Bashir,et al.  Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. , 2010, Lab on a chip.

[148]  David B. Marshall,et al.  Rapid prototyping of functional ceramic composites , 1996 .

[149]  Takehiro Takano,et al.  Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device , 1998 .

[150]  J. Cesarano,et al.  Directed colloidal assembly of 3D periodic structures , 2002 .

[151]  Rolf Mülhaupt,et al.  Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers , 2000 .

[152]  Chad E. Duty,et al.  Laser chemical vapour deposition: materials, modelling, and process control , 2001 .

[153]  John Evans,et al.  Flow rate of metal powders at reduced and elevated air pressure , 2005 .

[154]  Hermann Seitz,et al.  A review on 3D micro-additive manufacturing technologies , 2012, The International Journal of Advanced Manufacturing Technology.

[155]  John Evans,et al.  Zirconia/alumina functionally graded material made by ceramic ink jet printing , 1999 .

[156]  Ryan B. Wicker,et al.  Multi-material, multi-technology FDM system , 2012 .

[157]  Duc Truong Pham,et al.  Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling , 2001 .

[158]  Shoufeng Yang,et al.  A multi-component powder dispensing system for three dimensional functional gradients , 2004 .

[159]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[160]  Han Tong Loh,et al.  Development of a multi-nozzle drop-on-demand system for multi-material dispensing , 2009 .

[161]  Ryan B. Wicker,et al.  Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to Create Advanced Structures with Embedded Electrical Circuitry. , 2006 .

[162]  Yifu Shen,et al.  Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods , 2009 .

[163]  Yongnian Yan,et al.  Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition , 2002 .

[164]  Ryan B. Wicker,et al.  Integrating stereolithography and direct print technologies for 3D structural electronics fabrication , 2012 .

[165]  Shoufeng Yang,et al.  Rapid prototyping of ceramic lattices for hard tissue scaffolds , 2008 .

[166]  James D. Cawley,et al.  Solid freeform fabrication of ceramics , 1999 .

[167]  Andreas Gebhardt,et al.  Rapid prototyping , 2003 .

[168]  M. Boman,et al.  Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[169]  S. Rodrigues,et al.  Solid freeform fabrication of functional silicon nitride ceramics using laminated object manufacturing , 2000 .

[170]  Rafiq Noorani,et al.  Rapid prototyping : principles and applications , 2006 .

[171]  D. Cho,et al.  Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system , 2012 .

[172]  S. Zissi,et al.  Microstereophotolithography using a liquid crystal display as dynamic mask-generator , 1997 .

[173]  Joseph Pegna,et al.  E SAND-PAINTER : Two-dimensional powder deposition , 2008 .

[174]  Hod Lipson,et al.  Solid Freeform Fabrication for Autonomous Manufacturing of Complete Mobile Robots , 2005 .

[175]  J A Barron,et al.  Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns , 2004, Biomedical microdevices.

[176]  Vladimir Mironov,et al.  Bioprinting living structures , 2007 .

[177]  Shuji Matsusaka,et al.  Micro-feeding of fine powders using a capillary tube with ultrasonic vibration , 1995 .

[178]  H. Exner,et al.  Principles of Laser Micro Sintering , 2007 .

[179]  Peter Dubruel,et al.  A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. , 2012, Biomaterials.

[180]  R. Wicker,et al.  Development of an automated multiple material stereolithography machine , 2006 .

[181]  Rémy Glardon,et al.  Influence of Nd : YAG parameters on the selective laser sintering of metallic powders , 2001 .

[182]  Shoufeng Yang,et al.  Microfeeding with different ultrasonic nozzle designs. , 2009, Ultrasonics.

[183]  Harris L. Marcus,et al.  Using SALDVI and SALD with multi-material structures , 1998 .