Connecting and Integrating Theoretical Frames: The TELMA Contribution

This paper presents the methodology developed within TELMA for connecting and integrating the theoretical frames used by the different teams for studying the design and use of interactive learning environments in mathematics education. Two case studies are then analysed and compared in order to illustrate the methodology and the results it can lead to. The papers ends by a more general discussion about the outcomes of the experimental work developed within TELMA and the perspectives it offers for approaching theoretical fragmentation.

[1]  Y. Engeström,et al.  Activity theory and individual and social transformation. , 1999 .

[2]  Luc Trouche,et al.  The didactical challenge of symbolic calculators : turning a computational device into a mathematical instrument , 2005 .

[3]  Mariam Haspekian,et al.  An “Instrumental Approach” to Study the Integration of a Computer Tool Into Mathematics Teaching: the Case of Spreadsheets , 2005, Int. J. Comput. Math. Learn..

[4]  N. Balacheff,et al.  Didactique et intelligence artificielle , 1994 .

[5]  Jean-Marc Labat,et al.  Environnements Informatiques pour l'Apprentissage Humain , 2006 .

[6]  Elisabetta Robotti,et al.  An integrated perspective to approach technology in mathematics education , 2005 .

[7]  M. Mariotti,et al.  Semiotic Mediation in the Mathematics Classroom: Artefacts and Signs after a Vygotskian Perspective , 2008 .

[8]  Jean-François Nicaud,et al.  Mixing Microworld and Cas Features in Building Computer Systems that Help Students Learn Algebra , 2004, Int. J. Comput. Math. Learn..

[9]  Lyn D. English,et al.  Handbook of International Research in Mathematics Education , 2002 .

[10]  Jana Trgalova,et al.  TELMA Cross Experiment Guidelines , 2007 .

[11]  Rosa Maria Bottino,et al.  Using Activity Theory to study the relationship between technology and the learning environment in the arithmetic domain , 2008 .

[12]  Pierre Vérillon,et al.  Cognition and artifacts: A contribution to the study of though in relation to instrumented activity , 1995 .

[13]  Michèle Artigue,et al.  Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work , 2002, Int. J. Comput. Math. Learn..

[14]  M. Halliday Language as social semiotic: The social interpretation of language and meaning , 1976 .

[15]  Jeremy Kilpatrick,et al.  Third International Handbook on Mathematics Education , 2003 .

[16]  Jana Trgalova,et al.  Comparing theoretical frameworks enacted in experimental research: TELMA experience , 2008 .

[17]  Yves Chevallard,et al.  Concepts fondamentaux de la didactique : perspectives apportées par une approche anthropologique , 1991 .

[18]  Celia Hoyles,et al.  Windows on Mathematical Meanings , 1996 .

[19]  Rosa Maria Bottino,et al.  Mathematics Education & Digital Technologies: Facing the Challenge of Networking European Research Teams , 2009, Int. J. Comput. Math. Learn..

[20]  André Tricot,et al.  Utilité, utilisabilité, acceptabilité : interpréter les relations entre trois dimensions de l'évaluation des EIAH , 2003 .

[21]  Jeremy Kilpatrick,et al.  International handbook of mathematics education , 1997 .

[22]  Colette Laborde,et al.  Technology and Mathematics Education: A Multidimensional Study of the Evolution of Research and Innovation , 2003 .