Enhanced performance of visible-range nanostructured CuS photodetectors by Zn concentrations

[1]  Xinjuan Liu,et al.  Sulfur Vacancy-Rich CuS for Improved Surface-Enhanced Raman Spectroscopy and Full-Spectrum Photocatalysis , 2022, Nanomaterials.

[2]  M. Cheraghizade,et al.  Space-charge-limited current passivation of the self-powered and ultraviolet-to-visible range bilayer p-Si/n-Bi2S3 heterojunction photodetector by Ag coating , 2022, Journal of Alloys and Compounds.

[3]  R. Schaller,et al.  Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets. , 2022, Nano letters.

[4]  S. Xiong,et al.  Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in Cus , 2022, Social Science Research Network.

[5]  Ashutosh Kumar Singh,et al.  Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives , 2022, Surfaces and Interfaces.

[6]  A. Khosla,et al.  Current Developments in CuS Based Hybrid Nanocomposite for Electrochemical Biosensor Application: A Short Review , 2022, ECS Transactions.

[7]  P. Chand,et al.  Development of carbon-based copper sulfide nanocomposites for high energy supercapacitor applications: A comprehensive review , 2022, Journal of Energy Storage.

[8]  O. Schmidt,et al.  Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites , 2022, Angewandte Chemie.

[9]  Ziqing Li,et al.  Application of Nanostructured TiO2 in UV Photodetectors: A Review , 2022, Advanced materials.

[10]  J. Yun,et al.  Unraveling the photoconduction characteristics of single-step synthesized CuS and Cu9S5 micro-flowers , 2022, Journal of Alloys and Compounds.

[11]  M. Cheraghizade,et al.  Photovoltaic behavior of SnS solar cells under temperature variations , 2022, Optik.

[12]  Honglie Shen,et al.  High-performance CuS/n-Si heterojunction photodetectors prepared by e-beam evaporation of Cu films as precursor layers , 2021 .

[13]  Honglie Shen,et al.  Excellent near-infrared response performance in p-CuS/n-Si heterojunction using a low-temperature solution method , 2021, Surfaces and Interfaces.

[14]  M. Cheraghizade,et al.  Sonochemical synthesis of Fe-doped Cu3Se2 nanoparticles: Correlation of the strain and electrical properties for optoelectronics applications , 2021, Advanced Powder Technology.

[15]  P. A. Ajibade,et al.  Enhanced Photocatalytic Degradation of Ternary Dyes by Copper Sulfide Nanoparticles , 2021, Nanomaterials.

[16]  M. Osman,et al.  Influence of transition metals dopant type on the structural, optical, magnetic, and dielectric properties of ZnS nanoparticles prepared by ultrasonication process , 2021 .

[17]  M. Cheraghizade,et al.  Symmetric strain- and temperature-dependent optoelectronics performance of TiO2/SnS/Ag solar cells , 2021 .

[18]  M. Osman,et al.  Influence of doping with Sb3+, In3+, and Bi3+ ions on the structural, optical and dielectric properties of ZnS nanoparticles synthesized by ultrasonication process , 2021 .

[19]  D. Adair,et al.  3D Hierarchical Nanocrystalline CuS Cathode for Lithium Batteries , 2021, Materials.

[20]  M. Cheraghizade,et al.  Electro-sonical deposition of nanostructured Sb2Se3 films for optoelectronic applications , 2021 .

[21]  D. Adair,et al.  Morphology and Dimension Variations of Copper Sulfide for High-Performance Electrode in Rechargeable Batteries: A Review , 2020 .

[22]  D. Majumdar Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications , 2020 .

[23]  M. Cheraghizade,et al.  Physical properties of Pb-doped CuS nanostructures for optoelectronic applications , 2020 .

[24]  C. Dunnill,et al.  Economical and Facile Route to Produce Gram-Scale and Phase-Selective Copper Sulfides for Thermoelectric Applications , 2020, ACS Sustainable Chemistry & Engineering.

[25]  D. Geetha,et al.  Tuning the dopant (Zn2+) composition for uniform mesoporous Zn–CuS nanoflower via hydrothermal approach as a novel electrode material for high-rate supercapacitor , 2020, SN Applied Sciences.

[26]  X. Ouyang,et al.  Gradient heterostructure perovskite single crystals enable the improvement of radiative recombination for scintillator application. , 2020, Physical chemistry chemical physics : PCCP.

[27]  A. Sakr,et al.  Enhanced thermoelectric figure of merit in Bi-containing Sb2Te3 bulk crystalline alloys , 2020, Journal of Physics and Chemistry of Solids.

[28]  M. Osman,et al.  Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties , 2019, Journal of Materials Science: Materials in Electronics.

[29]  F. Jamali-Sheini,et al.  In-doped CuS nanostructures: Ultrasonic synthesis, physical properties, and enhanced photocatalytic behavior , 2019, Physica B: Condensed Matter.

[30]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[31]  Baoquan Sun,et al.  Suppression of non-radiative recombination toward high efficiency perovskite light-emitting diodes , 2019, APL Materials.

[32]  M. Cheraghizade,et al.  Annealing temperature of nanostructured SnS on the role of the absorber layer , 2019, Materials Science in Semiconductor Processing.

[33]  M. Rafiq Carrier transport mechanisms in semiconductor nanostructures and devices , 2018, Journal of Semiconductors.

[34]  F. Jamali-Sheini,et al.  Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method , 2017 .

[35]  S. Ray,et al.  Resistive switching characteristics of a single Zn-doped CuS nanoball anchored with multi-walled carbon nanotubes , 2016 .

[36]  Zhi Zheng,et al.  Doping Zn(2+) in CuS Nanoflowers into Chemically Homogeneous Zn0.49Cu0.50S1.01 Superlattice Crystal Structure as High-Efficiency n-Type Photoelectric Semiconductors. , 2016, ACS applied materials & interfaces.

[37]  N. Huang,et al.  Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies , 2015 .

[38]  A. Adam,et al.  Effect of heat treatment on the electrical and thermoelectric properties of Sb doped Bi2Se3 , 2015 .

[39]  Paul A. Maggard,et al.  Optical, electronic, and photoelectrochemical properties of the p-type Cu3−xVO4 semiconductor , 2015 .

[40]  K. Prabakar,et al.  Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells. , 2014, ACS applied materials & interfaces.

[41]  E. Haberer,et al.  Optical and electrical stability of viral-templated copper sulfide (Cu1.8S) films , 2014 .

[42]  S. Manna,et al.  Optical photoresponse of CuS-n-Si radial heterojunction with Si nanocone arrays fabricated by chemical etching. , 2013, Physical chemistry chemical physics : PCCP.

[43]  A. Adam,et al.  Structural, electrical, and thermoelectrical properties of (Bi1 − xSbx)2Se3 alloys prepared by a conventional melting technique , 2013, Journal of Experimental and Theoretical Physics.

[44]  Ahmad Monshi,et al.  Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD , 2012 .

[45]  E. Güneri,et al.  Optical properties of amorphous CuS thin films deposited chemically at different pH values , 2012 .

[46]  F. Patolsky,et al.  Weak rectifying behaviour of p-SnS/n-ITO heterojunctions , 2009 .

[47]  Christopher G. Bailey,et al.  Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .

[48]  E. Ibrahim,et al.  Electrical conduction of SnBi4Se7 , 2006 .

[49]  H. Nozaki,et al.  Anion Distributions and Phase Transitions in CuS1-xSex(x = 0-1) Studied by Raman Spectroscopy , 1993 .

[50]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[51]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[52]  A. Mohs,et al.  Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. , 2009, Nature nanotechnology.

[53]  Hongyuan Chen,et al.  Sonochemical synthesis of copper selenides nanocrystals with different phases , 2002 .