Shape changes in chemoresponsive liquid crystal elastomers

Abstract Liquid crystal elastomers are ordered polymers that undergo reversible, anisotropic shape change in response to a number of stimuli, including heat, light, and solvent. In this study, we design liquid crystal elastomers that actuate both axially and torsionally in response to chemical stimuli. We characterize the response of uniaxially-aligned liquid crystal elastomer films exposed to a variety of chemical stimuli of varying quality. In each solvent, there is a contraction along the alignment direction paired with an expansion in the perpendicular directions. Torsional actuation is generated by patterning a twisted alignment through the thickness of the liquid crystal elastomer. These hierarchically-patterned materials reversibly transition from flat to helical with over 200°/mm of twist in chemical vapor. This response is stable for at least 100 cycles. Ultimately, this chemoresponse is combined with mechanical instability to make high-twist torsional actuators with peak velocities of almost 400 RPM.

[1]  Hyun Jik Oh,et al.  A polymeric microfluidic valve employing a pH-responsive hydrogel microsphere as an actuating source , 2006 .

[2]  M. Remškar,et al.  Liquid crystal elastomer–nanoparticle systems for actuation , 2009 .

[3]  Robin Selinger,et al.  Modeling liquid crystal elastomers: actuators, pumps, and robots , 2008, SPIE OPTO.

[4]  J. E. Marshall,et al.  Anisotropic colloidal micromuscles from liquid crystal elastomers. , 2014, Journal of the American Chemical Society.

[5]  A Lendlein,et al.  Shape-memory polymers as stimuli-sensitive implant materials. , 2005, Clinical hemorheology and microcirculation.

[6]  C. Haines,et al.  Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk , 2014, Nature Communications.

[7]  Dirk J. Broer,et al.  Accordion‐like Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films , 2014 .

[8]  W. Huck,et al.  Thermal and UV shape shifting of surface topography. , 2006, Journal of the American Chemical Society.

[9]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[10]  Justin R. Kumpfer,et al.  Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. , 2011, Journal of the American Chemical Society.

[11]  Cees W. M. Bastiaansen,et al.  Stimuli‐Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels , 2015 .

[12]  Matthew L. Smith,et al.  Contactless, photoinitiated snap-through in azobenzene-functionalized polymers , 2013, Proceedings of the National Academy of Sciences.

[13]  Heino Finkelmann,et al.  A concept for bifocal contact‐ or intraocular lenses: liquid single crystal hydrogels (“LSCH”) , 2002 .

[14]  K. Urayama,et al.  Swelling and Shrinking Dynamics of Nematic Elastomers Having Global Director Orientation , 2006 .

[15]  D. Weitz,et al.  Topological changes in bipolar nematic droplets under flow. , 2007, Physical review letters.

[16]  M. Lima,et al.  Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy. , 2015, Nanoscale.

[17]  Three stage-volume phase transitions of a side-chain liquid crystalline elastomer immersed in nematic solvents. , 2010, The Journal of chemical physics.

[18]  Andreas Richter,et al.  Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications , 2003 .

[19]  Eva M. Campo,et al.  Nematic opto-mechanical actuators for the fabrication of refreshable tactile systems , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[20]  H. Finkelmann,et al.  Hystereses of volume changes in liquid single crystal elastomers swollen with low molecular weight liquid crystal , 2004 .

[21]  K. Urayama,et al.  Volume Transition of Liquid Crystalline Gels in Isotropic Solvents , 2003 .

[22]  Heino Finkelmann,et al.  Swelling dynamics of liquid crystal elastomers swollen with low molecular weight liquid crystals. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. DeSimone,et al.  Thermally Driven Giant Bending of Liquid Crystal Elastomer Films with Hybrid Alignment , 2010 .

[24]  A. Schenning,et al.  Printable optical sensors based on H-bonded supramolecular cholesteric liquid crystal networks. , 2012, Journal of the American Chemical Society.

[25]  Bin Wang,et al.  Finite-difference time-domain calculations of a liquid-crystal-based switchable Bragg grating. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  J. Esteve,et al.  Liquid-crystalline elastomer micropillar array for haptic actuation , 2013 .

[27]  J. Hao,et al.  Multiple-stimulus-responsive hydrogels of cationic surfactants and azoic salt mixtures , 2013, Colloid and Polymer Science.

[28]  Otto Stuhlman join A Physical Analysis of the Opening and Closing Movements of the Lobes of Venus' Fly-Trap , 1948 .

[29]  M. Warner,et al.  Changing liquid crystal elastomer ordering with light – a route to opto-mechanically responsive materials , 2009 .

[30]  P. Keller,et al.  Nematic Elastomer Fiber Actuator , 2003 .

[31]  Carl D. Modes,et al.  Curvature in nematic elastica responding to light and heat , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  A. Green The Elastic Stability of a Thin Twisted Strip. II , 1937 .

[33]  S. Craig,et al.  Chemoresponsive viscosity switching of a metallo-supramolecular polymer network near the percolation threshold , 2007 .

[34]  Lisa M. Bonanno,et al.  Integration of a Chemical‐Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual Colorimetric Readout , 2010, Advanced functional materials.

[35]  Christian D. Santangelo,et al.  Edge-defined metric buckling of temperature-responsive hydrogel ribbons and rings , 2014 .

[36]  Banahalli R. Ratna,et al.  Liquid Crystal Elastomers with Mechanical Properties of a Muscle , 2001 .

[37]  Wei Min Huang,et al.  Thermo-/chemo-responsive shape memory/change effect in a hydrogel and its composites , 2014 .

[38]  Soo-young Park,et al.  A liquid crystal polymer based single layer chemo-responsive actuator. , 2014, Chemical communications.

[39]  C. Ohm,et al.  Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process , 2011 .

[40]  H. Finkelmann,et al.  Nematic liquid single crystal elastomers , 1991 .

[41]  Jason B Shear,et al.  Multiphoton fabrication of chemically responsive protein hydrogels for microactuation , 2008, Proceedings of the National Academy of Sciences.

[42]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[43]  P. Keller,et al.  Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. , 2009, Journal of the American Chemical Society.

[44]  Frantisek Svec,et al.  Monolithic valves for microfluidic chips based on thermoresponsive polymer gels , 2003, Electrophoresis.

[45]  A. Kudrolli,et al.  Helicoids, wrinkles, and loops in twisted ribbons. , 2013, Physical review letters.

[46]  H. Finkelmann,et al.  A Simple and Versatile Synthetic Route for the Preparation of Main-Chain, Liquid-Crystalline Elastomers , 2000 .