A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions

We introduce a new framework for the global optimization of computationally expensive multimodal functions when derivatives are unavailable. The proposed Stochastic Response Surface (SRS) Method iteratively utilizes a response surface model to approximate the expensive function and identifies a promising point for function evaluation from a set of randomly generated points, called candidate points. Assuming some mild technical conditions, SRS converges to the global minimum in a probabilistic sense. We also propose Metric SRS (MSRS), which is a special case of SRS where the function evaluation point in each iteration is chosen to be the best candidate point according to two criteria: the estimated function value obtained from the response surface model, and the minimum distance from previously evaluated points. We develop a global optimization version and a multistart local optimization version of MSRS. In the numerical experiments, we used a radial basis function (RBF) model for MSRS and the resulting algorithms, Global MSRBF and Multistart Local MSRBF, were compared to 6 alternative global optimization methods, including a multistart derivative-based local optimization method. Multiple trials of all algorithms were compared on 17 multimodal test problems and on a 12-dimensional groundwater bioremediation application involving partial differential equations. The results indicate that Multistart Local MSRBF is the best on most of the higher dimensional problems, including the groundwater problem. It is also at least as good as the other algorithms on most of the lower dimensional problems. Global MSRBF is competitive with the other alternatives on most of the lower dimensional test problems and also on the groundwater problem. These results suggest that MSRBF is a promising approach for the global optimization of expensive functions.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  A. Griewank Generalized descent for global optimization , 1981 .

[3]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[4]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[5]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[6]  J. Friedman Multivariate adaptive regression splines , 1990 .

[7]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[8]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[9]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[10]  Fabio Schoen,et al.  A wide class of test functions for global optimization , 1993, J. Glob. Optim..

[11]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[12]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[13]  Andrew W. Moore,et al.  Memory-based Stochastic Optimization , 1995, NIPS.

[14]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[15]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..

[16]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[17]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[18]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[19]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[20]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[21]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[22]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[23]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[24]  M. Powell Recent research at Cambridge on radial basis functions , 1999 .

[25]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[26]  M. Matsunami,et al.  A combined method for the global optimization using radial basis function and deterministic approach , 1999 .

[27]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[28]  Christine A. Shoemaker,et al.  Comparison of Optimization Methods for Ground-Water Bioremediation , 1999 .

[29]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[30]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[31]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[32]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[33]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[34]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[35]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[36]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[37]  M. J. D. Powell,et al.  On trust region methods for unconstrained minimization without derivatives , 2003, Math. Program..

[38]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[39]  Rafael Martí,et al.  The OptQuest Callable Library , 2003 .

[40]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[41]  Frank Vanden Berghen,et al.  CONDOR, a new parallel, constrained extension of Powell's UOBYQA algorithm: experimental results and comparison with the DFO algorithm , 2005 .

[42]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..