A new lower bound for van der Waerden numbers

Abstract In this paper we prove a new recurrence relation on the van der Waerden numbers, w ( r , k ) . In particular, if p is a prime and p ≤ k then w ( r , k ) > p ⋅ w r − r p , k − 1 . This recurrence gives the lower bound w ( r , p + 1 ) > p r − 1 2 p when r ≤ p , which generalizes Berlekamp’s theorem on 2-colorings, and gives the best known bound for a large interval of r . The recurrence can also be used to construct explicit valid colorings, and it improves known lower bounds on small van der Waerden numbers.

[1]  E.R. Berlekamp A Construction for Partitions Which Avoid Long Arithmetic Progressions , 1968, Canadian Mathematical Bulletin.

[2]  Aaron Robertson,et al.  Bounds on some van der Waerden numbers , 2008, J. Comb. Theory, Ser. A.

[3]  Ronald L. Graham,et al.  ON THE GROWTH OF A VAN DER WAERDEN-LIKE FUNCTION , 2006 .

[4]  József Solymosi,et al.  Monochromatic Equilateral Right Triangles on the Integer Grid , 2006 .

[5]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[6]  Kevin O'Bryant,et al.  Sets of Integers that do not Contain Long Arithmetic Progressions , 2008, Electron. J. Comb..

[7]  Leo Moser Notes on Number Theory II : On a theorem of van der Waerden , 1960, Canadian Mathematical Bulletin.

[9]  William I. Gasarch,et al.  Lower Bounds on van der Waerden Numbers: Randomized- and Deterministic-Constructive , 2010, Electron. J. Comb..

[10]  Thomas F. Bloom,et al.  A quantitative improvement for Roth's theorem on arithmetic progressions , 2014, J. Lond. Math. Soc..

[11]  Michal Kouril,et al.  The van der Waerden Number W(2, 6) Is 1132 , 2008, Exp. Math..

[12]  Jean Bourgain,et al.  Roth’s theorem on progressions revisited , 2008 .

[13]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[14]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[15]  T. Sanders On Roth's theorem on progressions , 2010, 1011.0104.

[16]  Daniel Monroe,et al.  New Lower Bounds for van der Waerden Numbers Using Distributed Computing , 2016, ArXiv.

[17]  Dmitry A. Shabanov,et al.  Improved algorithms for colorings of simple hypergraphs and applications , 2016, J. Comb. Theory, Ser. B.

[18]  Michael D. Beeler,et al.  Some new Van der Waerden numbers , 1979, Discret. Math..

[19]  Two combinatorial theorems on arithmetic progressions , 1962 .