A new lower bound for van der Waerden numbers
暂无分享,去创建一个
Thomas Blankenship | Jay Cummings | Vladislav Taranchuk | Jay Cummings | Vladislav Taranchuk | Thomas Blankenship
[1] E.R. Berlekamp. A Construction for Partitions Which Avoid Long Arithmetic Progressions , 1968, Canadian Mathematical Bulletin.
[2] Aaron Robertson,et al. Bounds on some van der Waerden numbers , 2008, J. Comb. Theory, Ser. A.
[3] Ronald L. Graham,et al. ON THE GROWTH OF A VAN DER WAERDEN-LIKE FUNCTION , 2006 .
[4] József Solymosi,et al. Monochromatic Equilateral Right Triangles on the Integer Grid , 2006 .
[5] P. Erdös,et al. Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .
[6] Kevin O'Bryant,et al. Sets of Integers that do not Contain Long Arithmetic Progressions , 2008, Electron. J. Comb..
[7] Leo Moser. Notes on Number Theory II : On a theorem of van der Waerden , 1960, Canadian Mathematical Bulletin.
[9] William I. Gasarch,et al. Lower Bounds on van der Waerden Numbers: Randomized- and Deterministic-Constructive , 2010, Electron. J. Comb..
[10] Thomas F. Bloom,et al. A quantitative improvement for Roth's theorem on arithmetic progressions , 2014, J. Lond. Math. Soc..
[11] Michal Kouril,et al. The van der Waerden Number W(2, 6) Is 1132 , 2008, Exp. Math..
[12] Jean Bourgain,et al. Roth’s theorem on progressions revisited , 2008 .
[13] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[14] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[15] T. Sanders. On Roth's theorem on progressions , 2010, 1011.0104.
[16] Daniel Monroe,et al. New Lower Bounds for van der Waerden Numbers Using Distributed Computing , 2016, ArXiv.
[17] Dmitry A. Shabanov,et al. Improved algorithms for colorings of simple hypergraphs and applications , 2016, J. Comb. Theory, Ser. B.
[18] Michael D. Beeler,et al. Some new Van der Waerden numbers , 1979, Discret. Math..
[19] Two combinatorial theorems on arithmetic progressions , 1962 .