Polynomial preserving recovery on boundary
暂无分享,去创建一个
Zhimin Zhang | Qingsong Zou | Ren Zhao | Hailong Guo | Zhimin Zhang | Hailong Guo | Q. Zou | R. Zhao
[1] Zhimin Zhang,et al. Function Value Recovery and Its Application in Eigenvalue Problems , 2012, SIAM J. Numer. Anal..
[2] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[3] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[4] Michel Fortin,et al. On a new edge‐based gradient recovery technique , 2013 .
[5] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[6] Zhimin Zhang,et al. Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method , 2015, J. Comput. Phys..
[7] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] Weiming Cao,et al. Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes , 2014, Math. Comput..
[10] Aihui Zhou,et al. A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..
[11] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[12] J. Z. Zhu,et al. Superconvergence recovery technique and a posteriori error estimators , 1990 .
[13] Zhimin Zhang,et al. Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems , 2017, J. Sci. Comput..
[14] Nianyu Yi,et al. The Superconvergent Cluster Recovery Method , 2010, J. Sci. Comput..
[15] Weizhang Huang,et al. How a Nonconvergent Recovered Hessian Works in Mesh Adaptation , 2014, SIAM J. Numer. Anal..
[16] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[17] Simona Perotto,et al. Anisotropic mesh adaptation driven by a recovery‐based error estimator for shallow water flow modeling , 2012 .
[18] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[19] Zhimin Zhang,et al. Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..
[20] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[21] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[22] Zhimin Zhang,et al. Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..
[23] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .