Polynomial preserving recovery on boundary

In this paper, we propose two systematic strategies to recover the gradient on the boundary of a domain. The recovered gradient has comparable superconvergent property on the boundary as that in the interior of the domain. This superconvergence property has been validated by several numerical experiments.

[1]  Zhimin Zhang,et al.  Function Value Recovery and Its Application in Eigenvalue Problems , 2012, SIAM J. Numer. Anal..

[2]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[3]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[4]  Michel Fortin,et al.  On a new edge‐based gradient recovery technique , 2013 .

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[6]  Zhimin Zhang,et al.  Superconvergence property of an over-penalized discontinuous Galerkin finite element gradient recovery method , 2015, J. Comput. Phys..

[7]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Weiming Cao,et al.  Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes , 2014, Math. Comput..

[10]  Aihui Zhou,et al.  A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..

[11]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[12]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[13]  Zhimin Zhang,et al.  Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems , 2017, J. Sci. Comput..

[14]  Nianyu Yi,et al.  The Superconvergent Cluster Recovery Method , 2010, J. Sci. Comput..

[15]  Weizhang Huang,et al.  How a Nonconvergent Recovered Hessian Works in Mesh Adaptation , 2014, SIAM J. Numer. Anal..

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Simona Perotto,et al.  Anisotropic mesh adaptation driven by a recovery‐based error estimator for shallow water flow modeling , 2012 .

[18]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[19]  Zhimin Zhang,et al.  Gradient Recovery for the Crouzeix–Raviart Element , 2015, J. Sci. Comput..

[20]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[21]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[22]  Zhimin Zhang,et al.  Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..

[23]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .