Polymer hydrogel capsules: en route toward synthetic cellular systems.

Engineered synthetic cellular systems are expected to become a powerful biomedical platform for the development of next-generation therapeutic carrier vehicles. In this mini-review, we discuss the potential of polymer capsules derived by the layer-by-layer assembly as a platform system for the construction of artificial cells and organelles. We outline the characteristics of polymer capsules that make them unique for these applications, and we describe several successful examples of microencapsulated catalysis, including biologically relevant enzymatic reactions. We also provide examples of subcompartmentalized polymer capsules, which represent a major step toward the creation of synthetic cells.

[1]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[2]  F. Caruso,et al.  Degradable, Surfactant‐Free, Monodisperse Polymer‐Encapsulated Emulsions as Anticancer Drug Carriers , 2009 .

[3]  P. Walde,et al.  Permeability Enhancement of Lipid Vesicles to Nucleotides by Use of Sodium Cholate: Basic Studies and Application to an Enzyme-Catalyzed Reaction Occurring inside the Vesicles , 2002 .

[4]  Ying Zhang,et al.  Artificial cells: building bioinspired systems using small-scale biology. , 2008, Trends in biotechnology.

[5]  F. Caruso,et al.  Tailoring the polyelectrolyte coating of metal nanoparticles. , 2001 .

[6]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[7]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[8]  Zhibo Li,et al.  Multicompartment Micelles from ABC Miktoarm Stars in Water , 2004, Science.

[9]  A. Pohorille,et al.  Artificial cells: prospects for biotechnology. , 2002, Trends in biotechnology.

[10]  Steve Granick,et al.  Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly , 2002 .

[11]  J. Szostak,et al.  Template-directed synthesis of a genetic polymer in a model protocell , 2008, Nature.

[12]  F. Caruso,et al.  Disulfide cross-linked polymer capsules: en route to biodeconstructible systems. , 2006, Biomacromolecules.

[13]  I. S. Zanaveskina,et al.  Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules , 2003 .

[14]  F. Caruso,et al.  Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. , 2000 .

[15]  F. Caruso,et al.  Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. , 2009, Biomaterials.

[16]  C A Evans,et al.  The vesosome-- a multicompartment drug delivery vehicle. , 2004, Current medicinal chemistry.

[17]  L. Dähne,et al.  Encapsulation of synthetically valuable biocatalysts into polyelectrolyte multilayer systems. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[18]  F. Caruso,et al.  Capsosomes: subcompartmentalizing polyelectrolyte capsules using liposomes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  H. Möhwald,et al.  Charge-controlled permeability of polyelectrolyte microcapsules. , 2005, The journal of physical chemistry. B.

[20]  Michael L Klein,et al.  Emerging Applications of Polymersomes in Delivery: from Molecular Dynamics to Shrinkage of Tumors. , 2007, Progress in polymer science.

[21]  G. Sukhorukov,et al.  Protein—Calcium Carbonate Coprecipitation: A Tool for Protein Encapsulation , 2008, Biotechnology progress.

[22]  Giuseppe Battaglia,et al.  Polymersomes: nature inspired nanometer sized compartments , 2009 .

[23]  G. Sukhorukov,et al.  Polyelectrolyte multilayer capsules as vehicles with tunable permeability. , 2004, Advances in colloid and interface science.

[24]  H. Möhwald,et al.  Controlled Release of DNA from Self‐Degrading Microcapsules , 2007 .

[25]  Yajun Wang,et al.  Nanoporous colloids: building blocks for a new generation of structured materials , 2009 .

[26]  H. Möhwald,et al.  Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. , 2007, Angewandte Chemie.

[27]  D. Trau,et al.  Matrix-assisted colloidosome reverse-phase layer-by-layer encapsulating biomolecules in hydrogel microcapsules with extremely high efficiency and retention stability. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  Stephen Mann,et al.  Life as a nanoscale phenomenon. , 2008, Angewandte Chemie.

[29]  V. Kabanov,et al.  Sorption of Proteins by Slightly Cross-Linked Polyelectrolyte Hydrogels: Kinetics and Mechanism , 2004 .

[30]  A. Yu,et al.  Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. , 2006, Chemical Communications.

[31]  Ronald R. Breaker,et al.  Production of RNA by a polymerase protein encapsulated within phospholipid vesicles , 1994, Journal of Molecular Evolution.

[32]  Frank Caruso,et al.  Probing the permeability of polyelectrolyte multilayer capsules via a molecular beacon approach. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. Deamer,et al.  Membrane self‐assembly processes: Steps toward the first cellular life , 2002, The Anatomical record.

[34]  F. Caruso,et al.  Next generation, sequentially assembled ultrathin films: beyond electrostatics. , 2007, Chemical Society reviews.

[35]  F. Caruso,et al.  A general approach for DNA encapsulation in degradable polymer microcapsules. , 2007, ACS nano.

[36]  J. Toca-Herrera,et al.  Efficiency of a bienzyme sequential reaction system immobilized on polyelectrolyte multilayer-coated colloids. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[37]  J. Zasadzinski,et al.  Multiple lipid compartments slow vesicle contents release in lipases and serum. , 2007, ACS nano.

[38]  Yajun Wang,et al.  Template synthesis of stimuli-responsive nanoporous polymer-based spheres via sequential assembly , 2006 .

[39]  D. Haynie,et al.  High-capacity functional protein encapsulation in nanoengineered polypeptide microcapsules. , 2006, Chemical communications.

[40]  F. Caruso,et al.  Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates , 2000 .

[41]  Wim E. Hennink,et al.  Self‐Exploding Beads Releasing Microcarriers , 2008 .

[42]  F. Caruso,et al.  Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[43]  Amish J. Patel,et al.  Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules , 2004 .

[44]  Pierre-Alain Monnard,et al.  Models of primitive cellular life: polymerases and templates in liposomes , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  D. Trau,et al.  Diffusion Controlled and Temperature Stable Microcapsule Reaction Compartments for High‐Throughput Microcapsule‐PCR , 2008 .

[46]  P. Luisi,et al.  The Use of Liposomes for Constructing Cell Models , 2002, Journal of biological physics.

[47]  Horst Vogel,et al.  An integrated self-assembled nanofluidic system for controlled biological chemistries. , 2008, Angewandte Chemie.

[48]  D. Deamer,et al.  A giant step towards artificial life? , 2005, Trends in biotechnology.

[49]  H. Möhwald,et al.  Sustained release properties of polyelectrolyte multilayer capsules. , 2001 .

[50]  Paramjit Singh,et al.  Development of novel fusogenic vesosomes for transcutaneous immunization. , 2006, Vaccine.

[51]  F. Caruso,et al.  Binding, Internalization, and Antigen Presentation of Vaccine‐Loaded Nanoengineered Capsules in Blood , 2008 .

[52]  F. Caruso,et al.  A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. , 2009, Biomaterials.

[53]  C. Chern,et al.  Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. , 2008, Angewandte Chemie.

[54]  Gleb B Sukhorukov,et al.  Release mechanisms for polyelectrolyte capsules. , 2007, Chemical Society reviews.

[55]  M. Textor,et al.  Biofunctional Polyelectrolyte Multilayers and Microcapsules: Control of Non‐Specific and Bio‐Specific Protein Adsorption , 2005 .

[56]  M. Steup,et al.  Red blood cell templated polyelectrolyte capsules: A novel vehicle for the stable encapsulation of DNA and proteins , 2006 .

[57]  Yajun Wang,et al.  Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. , 2009, Angewandte Chemie.

[58]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[59]  Kostas Kostarelos,et al.  Construction of nanoscale multicompartment liposomes for combinatory drug delivery. , 2007, International journal of pharmaceutics.

[60]  Gleb B. Sukhorukov,et al.  Remote Control of Bioreactions in Multicompartment Capsules , 2007 .

[61]  L. Bachas,et al.  Controlled layer-by-layer immobilization of horseradish peroxidase. , 1999, Biotechnology and bioengineering.

[62]  Madhavan Nallani,et al.  A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. , 2009, Chemistry.

[63]  Svetlana A. Sukhishvili,et al.  Layer‐by‐Layer Hydrogen‐Bonded Polymer Films: From Fundamentals to Applications , 2009 .

[64]  Yajun Wang,et al.  Enzyme encapsulation in nanoporous silica spheres. , 2004, Chemical communications.

[65]  Rohit Srivastava,et al.  Stable encapsulation of active enzyme by application of multilayer nanofilm coatings to alginate microspheres. , 2005, Macromolecular bioscience.

[66]  Ricard V Solé,et al.  Evolution and self-assembly of protocells. , 2009, The international journal of biochemistry & cell biology.

[67]  Sune M. Christensen,et al.  Surface-based lipid vesicle reactor systems: fabrication and applications. , 2007, Soft matter.

[68]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Rona Chandrawati,et al.  A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules. , 2009, Angewandte Chemie.

[70]  G. Decher,et al.  Functional core/shell nanoparticles via layer-by-layer assembly. investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[71]  H. Möhwald,et al.  Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules. , 2001 .

[72]  F. Caruso,et al.  Disulfide-Stabilized Poly(methacrylic acid) Capsules: Formation, Cross-Linking, and Degradation Behavior , 2008 .

[73]  G. Sukhorukov,et al.  Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase. , 2006, Biomacromolecules.

[74]  F. Caruso,et al.  Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. , 2007, ACS nano.