Optimal Strategies in Weighted Limit Games (full version)

We prove the existence and computability of optimal strategies in weighted limit games, zero-sum infinite-duration games with a Buchi-style winning condition requiring to produce infinitely many play prefixes that satisfy a given regular specification. Quality of plays is measured in the maximal weight of infixes between successive play prefixes that satisfy the specification.

[1]  Rajeev Alur,et al.  Parametric temporal logic for “model measuring” , 2001, TOCL.

[2]  Kim G. Larsen,et al.  Optimal Bounds for Multiweighted and Parametrised Energy Games , 2013, Theories of Programming and Formal Methods.

[3]  Krishnendu Chatterjee,et al.  Finitary Winning in omega-Regular Games , 2006, TACAS.

[4]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discret. Appl. Math..

[5]  Olivier Serre,et al.  Parity Games Played on Transition Graphs of One-Counter Processes , 2006, FoSSaCS.

[6]  Krishnendu Chatterjee,et al.  Better Quality in Synthesis through Quantitative Objectives , 2009, CAV.

[7]  Martin Zimmermann,et al.  Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs , 2016, Log. Methods Comput. Sci..

[8]  A. Ehrenfeucht,et al.  Positional strategies for mean payoff games , 1979 .

[9]  Jean-François Raskin,et al.  Games with imperfect information: theory and algorithms , 2011, Lectures in Game Theory for Computer Scientists.

[10]  Martin Zimmermann,et al.  Parametric Linear Dynamic Logic , 2014, GandALF.

[11]  Frank Thuijsman,et al.  The bad match; a total reward stochastic game , 1987 .

[12]  Orna Kupferman,et al.  From liveness to promptness , 2007, Formal Methods Syst. Des..

[13]  Bernd Finkbeiner,et al.  Synthesis of Reactive Systems , 2016, Dependable Software Systems Engineering.

[14]  Martin Zimmermann Parameterized linear temporal logics meet costs: still not costlier than LTL , 2016, Acta Informatica.

[15]  Alonzo Church,et al.  Logic, arithmetic, and automata , 1962 .

[16]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[17]  Thierry Cachat Symbolic Strategy Synthesis for Games on Pushdown Graphs , 2002, ICALP.

[18]  Benjamin Monmege,et al.  To Reach or not to Reach? Efficient Algorithms for Total-Payoff Games , 2014, CONCUR.

[19]  Vladimir Gurvich,et al.  On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction , 2008, Theory of Computing Systems.

[20]  Véronique Bruyère,et al.  Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative Games , 2013, STACS.

[21]  Kim G. Larsen,et al.  Average-energy games , 2015, Acta Informatica.

[22]  Martin Zimmermann Optimal Bounds in Parametric LTL Games , 2011, GandALF.

[23]  Krishnendu Chatterjee,et al.  Efficient Controller Synthesis for Consumption Games with Multiple Resource Types , 2012, CAV.

[24]  Martin Zimmermann,et al.  Parity and Streett Games with Costs , 2012, Log. Methods Comput. Sci..

[25]  Krishnendu Chatterjee,et al.  Finitary winning in ω-regular games , 2009, TOCL.

[26]  Wolfgang Thomas,et al.  Symbolic Synthesis of Finite-State Controllers for Request-Response Specifications , 2003, CIAA.

[27]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[28]  Krishnendu Chatterjee,et al.  Energy Parity Games , 2010, ICALP.

[29]  Sven Schewe,et al.  Parity Games with Weights , 2018, CSL.

[30]  Krishnendu Chatterjee,et al.  Mean-payoff parity games , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[31]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[32]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[33]  Hugo Gimbert,et al.  When Can You Play Positionally? , 2004, MFCS.

[34]  A. Puri Theory of hybrid systems and discrete event systems , 1996 .

[35]  Arnaud Carayol,et al.  Optimal Strategies in Pushdown Reachability Games , 2018, MFCS.

[36]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..