Dithionite/air direct ion liquid fuel cell

[1]  Jens Noack,et al.  Development and characterization of a 280 cm2 vanadium/oxygen fuel cell , 2014 .

[2]  Andreas Poullikkas,et al.  A comparative overview of large-scale battery systems for electricity storage , 2013 .

[3]  Qi Zhang,et al.  Estimation of the energy storage requirement of a future 100% renewable energy system in Japan , 2012 .

[4]  Chris Menictas,et al.  Performance of vanadium-oxygen redox fuel cell , 2011 .

[5]  Zhongwei Chen,et al.  A review on non-precious metal electrocatalysts for PEM fuel cells , 2011 .

[6]  Matthias Wessling,et al.  A polyelectrolyte membrane-based vanadium/air redox flow battery , 2011 .

[7]  Paul Denholm,et al.  Grid flexibility and storage required to achieve very high penetration of variable renewable electricity , 2011 .

[8]  E. Temmerman,et al.  Kinetics and mechanism of the oxidation of sodium dithionite at a platinum electrode in alkaline solution , 2003 .

[9]  J. D. Strycker,et al.  Electrochemical behaviour of sodium dithionite and sulfite at a gold electrode in alkaline solution , 2001 .

[10]  E. Temmerman,et al.  Influence of changes of platinum electrode surface condition on the kinetics of the oxidation of sodium dithionite and sulfite in alkaline solution , 2000 .

[11]  P. Kohl,et al.  Electrosynthesis of Sodium Hydrosulfite I. Development of an Online Process Control Monitor , 1998 .

[12]  P. Kohl,et al.  Electrosynthesis of Sodium Hydrosulfite II. The Effect of Cathode Material , 1998 .

[13]  T. Kousksou,et al.  Energy storage: Applications and challenges , 2014 .