Concurrent Effects of High Hydrostatic Pressure, Acidity and Heat on the Destruction and Injury of Yeasts.

Saccharomyces cerevisiae ATCC 2373 and Zygosaccharomyces bailii ATCC 36947 were exposed to hydrostatic pressures ranging from 1,500 to 3,000 atmospheres for 10, 20 and 30 min in 0.1 M citrate buffer at pH 3.0, 4.0 and 5.0 at 25 and 45°C. Inactivation of inoculated yeast cultures was achieved in spaghetti sauce with meat at 25°C with 3,000 atmospheres for 10 min and also at 45°C and 2,500 atmospheres for 10 min. Viable counts were determined on potato dextrose agar (PDA) incubated at 30°C for 48 h. Pressure-induced injury was demonstrated by plate count differential between PDA and PDA supplemented with glucose (PDAG). A reduction of 7-log10 cycles colony forming units (CFU)/ml was seen for both strains at 3,000 atmospheres for 10 min at 25°C at all pH levels and at 2,250 atmospheres, pH 5.0 for 20 min at 45°C. At 2,000 atmospheres, pH 3.0 for 30 min, the increase in temperature from 25 to 45°C increased the inactivation of yeast by 6-log10 cycles. Lowering the pH from 5.0 to 3.0 enhanced lethality up to 2-log10 cycles at 2,250 atmospheres, 25°C for 30 min. Injury was most apparent at exposure parameters that produced 3- to 5-log10 cycle reductions on PDA. This was achieved (99% injury) at 2,250 atmospheres, 25°C for 30 min. These data indicate that mild heat and acidity contribute to the effectiveness of the inactivation and injury of yeast by high hydrostatic pressure (HHP).