High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells

Perovskite/CIGS tandem cells Tandem solar cells can boost efficiency by using more of the available solar spectrum. Han et al. fabricated a two-terminal tandem cell with an inorganicorganic hybrid perovskite top layer and a Cu(In,Ga)Se2 (CIGS) bottom layer. Control of the roughness of the CIGS surface and the use of a heavily doped organic hole transport layer were crucial to achieve a 22.4% power conversion efficiency. The unencapsulated tandem cells maintained almost 90% of their efficiency after 500 hours of operation under ambient conditions. Science, this issue p. 904 Optimization of the interconnection region between cells is crucial for high efficiency. The combination of hybrid perovskite and Cu(In,Ga)Se2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.

[1]  T. Kato Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status , 2017 .

[2]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[3]  Yang Yang,et al.  Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[4]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[5]  Rommel Noufi,et al.  Critical issues in the design of polycrystalline, thin‐film tandem solar cells , 2003 .

[6]  Tayfun Gokmen,et al.  Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .

[7]  Cheng Bi,et al.  Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells , 2015 .

[8]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[9]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[10]  J. Yun,et al.  Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique , 2010 .

[11]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[12]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[13]  Arvind Shah,et al.  Efficiency limits for single-junction and tandem solar cells , 2006 .

[14]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[15]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[16]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[17]  Shin Woei Leow,et al.  Over 20% Efficient CIGS–Perovskite Tandem Solar Cells , 2017 .

[18]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[19]  Jin-seong Park,et al.  CMP characteristics and optical property of ITO thin film by using silica slurry with a variety of process parameters , 2006 .

[20]  Yang Yang,et al.  10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell , 2015, Nature Communications.

[21]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[22]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[23]  Wei Zhang,et al.  Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. , 2015, Angewandte Chemie.

[24]  Youn-Ok Choi,et al.  Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering , 2012 .

[25]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[26]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[27]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[28]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[29]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[30]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[31]  Michael D. McGehee,et al.  Materials science: Fast-track solar cells , 2013, Nature.

[32]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[33]  Martin A. Green,et al.  Limiting efficiency for current‐constrained two‐terminal tandem cell stacks , 2002 .

[34]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[35]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[36]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[37]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[38]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[39]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[40]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[41]  Michael Saliba,et al.  Perovskite solar cells must come of age , 2018, Science.

[42]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[43]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[44]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[45]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[46]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[47]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[48]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[49]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[50]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.