Covariance regularity and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approxi

In an open, bounded domain D ⊂ R with smooth boundary ∂D or on a smooth, closed and compact, Riemannian n-manifold M⊂ R, we consider the linear operator equation Au = f where A is a boundedly invertible, strongly elliptic pseudodifferential operator of order r ∈ R with analytic coefficients, covering all linear, second order elliptic PDEs as well as their boundary reductions. Here, f ∈ L(Ω;H) is an H-valued random field with finite second moments, with H denoting the (isotropic) Sobolev space of (not necessarily integer) order t modelled on the domain D or manifoldM, respectively. We prove that the random solution’s covariance kernelKu = (A ⊗A)Kf on D×D (resp.M×M) is an asymptotically smooth function provided that the covariance function Kf of the random data is a Schwartz distributional kernel of an elliptic pseudodifferential operator. As a consequence, numerical H-matrix calculus allows deterministic approximation of singular covariances Ku of the random solution u = A −1f ∈ L2(Ω;Ht−r) in D × D with work versus accuracy essentially equal to that for the mean field approximation in D, overcoming the curse of dimensionality in this case.

[1]  Robert T. Seeley,et al.  Topics in pseudo-differential operators , 2010 .

[2]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[3]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[4]  F. Nobile,et al.  Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term , 2014 .

[5]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[6]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[7]  L. Rodino Linear Partial Differential Operators in Gevrey Spaces , 1993 .

[8]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[9]  W. Hackbusch,et al.  A sparse H -matrix arithmetic: general complexity estimates , 2000 .

[10]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2013 .

[11]  Paul Krée,et al.  Les noyaux des opérateurs pseudo-différentiels classiques (OPDC) , 1969 .

[12]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[13]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[14]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[15]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[16]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[17]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[18]  Helmut Harbrecht,et al.  $${\mathcal {H}}$$H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation , 2015, J. Sci. Comput..

[19]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[20]  Alexey Chernov,et al.  Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid , 2015, Adv. Comput. Math..

[21]  Christoph Schwab,et al.  hp‐FEM for second moments of elliptic PDEs with stochastic data. I. Analytic regularity , 2012 .

[22]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[23]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[24]  Helmut Harbrecht,et al.  Second Moment Analysis for Robin Boundary Value Problems on Random Domains , 2014 .

[25]  Fabio Nobile,et al.  Low-Rank Tensor Approximation for High-Order Correlation Functions of Gaussian Random Fields , 2015, SIAM/ASA J. Uncertain. Quantification.

[26]  Robert T. Seeley,et al.  SINGULAR INTEGRALS AND BOUNDARY VALUE PROBLEMS. , 1966 .

[27]  F. Trèves Review: M. A. Shubin, Pseudodifferential operators and spectral theory , 1988 .

[28]  Christoph Schwab,et al.  First order k-th moment finite element analysis of nonlinear operator equations with stochastic data , 2013, Math. Comput..

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .

[30]  Christoph Schwab,et al.  hp-FEM for second moments of elliptic PDEs with stochastic data , 2010 .

[31]  Christoph Schwab,et al.  hp‐FEM for second moments of elliptic PDEs with stochastic data. II: Exponential convergence for stationary singular covariance functions , 2012 .

[32]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[33]  Paul Krée,et al.  Pseudo-differential operators and Gevrey classes , 1967 .

[34]  Helmut Harbrecht,et al.  Combination technique based k-th moment analysis of elliptic problems with random diffusion , 2013, J. Comput. Phys..

[35]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[36]  Michael Griebel,et al.  On the construction of sparse tensor product spaces , 2012, Math. Comput..

[37]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[38]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[39]  Helmut Harbrecht,et al.  First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .

[40]  Reinhold Schneider,et al.  Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.

[41]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..