Set-structured and cost-sharing heuristics for classical planning

Problem abstractions based on (either completely or partially) ignoring delete effects of the actions provide the basis for some seminal classical planning heuristics. However, the palette of the conceptual tools exploited by these heuristics remains rather limited. We study a framework for approximating the optimal cost solutions for problems with no delete effects that bridges between certain works on heuristic-search classical planning and on probabilistic reasoning. Our analysis results in developing a novel heuristic function that combines “informed” set-structured cost estimates and “conservative” action cost sharing. Our empirical comparative evaluation provides a clear evidence for the attractiveness of this heuristic estimate. In addition, we examine a (suggested before in the context of probabilistic reasoning) admissible heuristic based on a stronger variant of action cost sharing. We show that what is good for “typical” problems of probabilistic reasoning turns out not to be so for “typical” problems of classical planning, and provide a formal account for that difference.

[1]  Gerald Jay Sussman,et al.  A Computer Model of Skill Acquisition , 1975 .

[2]  James A. Hendler,et al.  Readings in Planning , 1994 .

[3]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[4]  Richard E. Korf,et al.  Heuristic evaluation functions in artificial intelligence search algorithms , 1995, Minds and Machines.

[5]  Blai Bonet,et al.  Heuristics for Planning with Penalties and Rewards using Compiled Knowledge , 2006, KR.

[6]  Ronen I. Brafman On Reachability, Relevance, and Resolution in the Planning as Satisfiability Approach , 2001, J. Artif. Intell. Res..

[7]  Hector Geffner,et al.  Perspectives on artificial intelligence planning , 2002, AAAI/IAAI.

[8]  Hector Geffner,et al.  Heuristics for Planning with Action Costs Revisited , 2008, ECAI.

[9]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[10]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[11]  Ronan Cummins,et al.  Evolved term-weighting schemes in Information Retrieval: an analysis of the solution space , 2006, Artificial Intelligence Review.

[12]  Thomas Dean,et al.  Automated planning , 1996, CSUR.

[13]  John K. Slaney,et al.  Blocks World revisited , 2001, Artif. Intell..

[14]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[15]  Yaxin Bi,et al.  Combining rough decisions for intelligent text mining using Dempster’s rule , 2006, Artificial Intelligence Review.

[16]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[17]  Carmel Domshlak,et al.  Cost-Sharing in Bayesian Knowledge Bases , 2013, UAI.

[18]  Malte Helmert,et al.  Accuracy of Admissible Heuristic Functions in Selected Planning Domains , 2008, AAAI.

[19]  Drew McDermott,et al.  Using Regression-Match Graphs to Control Search in Planning , 1999, Artif. Intell..

[20]  Stefan Edelkamp,et al.  Symbolic Pattern Databases in Heuristic Search Planning , 2002, AIPS.

[21]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[22]  Eugene Charniak,et al.  A New Admissible Heuristic for Minimal-Cost Proofs , 1991, AAAI.

[23]  Carmel Domshlak,et al.  Probabilistic Planning via Heuristic Forward Search and Weighted Model Counting , 2007, J. Artif. Intell. Res..

[24]  Patrik Haslum,et al.  New Admissible Heuristics for Domain-Independent Planning , 2005, AAAI.

[25]  David E. Wilkins,et al.  Domain-Independent Planning: Representation and Plan Generation , 1984, Artif. Intell..

[26]  Ronen I. Brafman,et al.  On Decision-Theoretic Foundations for Defaults , 1995, IJCAI.

[27]  David E. Smith,et al.  Conformant Graphplan , 1998, AAAI/IAAI.

[28]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[29]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[30]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[31]  Subbarao Kambhampati,et al.  Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP , 2001, Artif. Intell..

[32]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[33]  Daniel Bryce,et al.  A Tutorial on Planning Graph Based Reachability Heuristics , 2007, AI Mag..

[34]  J. Hoffmann,et al.  Where 'Ignoring Delete Lists' Works: Local Search Topology in Planning Benchmarks , 2005, J. Artif. Intell. Res..

[35]  Ioannis P. Vlahavas,et al.  The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning , 2001, J. Artif. Intell. Res..

[36]  Carmel Domshlak,et al.  Structural Patterns Heuristics via Fork Decomposition , 2008, ICAPS.

[37]  Daniel S. Weld,et al.  Combining linear programming and satisfiability solving for resource planning , 2001, The Knowledge Engineering Review.

[38]  Jörg Hoffmann Utilizing Problem Structure in Planning: A Local Search Approach , 2003, Künstliche Intell..

[39]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[40]  Jussi Rintanen Unified Definition of Heuristics for Classical Planning , 2006, ECAI.

[41]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[42]  Fahiem Bacchus,et al.  Generalizing GraphPlan by Formulating Planning as a CSP , 2003, IJCAI.

[43]  Carmel Domshlak,et al.  Fast Probabilistic Planning through Weighted Model Counting , 2006, ICAPS.

[44]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[45]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[46]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[47]  Daniel Bryce,et al.  Planning Graph Heuristics for Belief Space Search , 2006, J. Artif. Intell. Res..

[48]  Vincent Vidal,et al.  A Lookahead Strategy for Heuristic Search Planning , 2004, ICAPS.

[49]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[50]  Judith Good,et al.  Learning to Think and Communicate with Diagrams: 14 Questions to Consider , 2001, Artificial Intelligence Review.

[51]  Fahiem Bacchus,et al.  AIPS 2000 Planning Competition: The Fifth International Conference on Artificial Intelligence Planning and Scheduling Systems , 2001 .

[52]  James A. Hendler,et al.  AI Planning: Systems and Techniques , 1990, AI Mag..

[53]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[54]  Daniel S. Weld Recent Advances in AI Planning , 1999, AI Mag..

[55]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[56]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[57]  Subbarao Kambhampati,et al.  Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search , 2002, Artif. Intell..

[58]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[59]  Armando Tacchella,et al.  SAT-based planning in complex domains: Concurrency, constraints and nondeterminism , 2003, Artif. Intell..

[60]  Ronen I. Brafman,et al.  Conformant planning via heuristic forward search: A new approach , 2004, Artif. Intell..