Integrated temperature sensor based on an enhanced pyroelectric photonic crystal.

In this paper, temperature variations are detected thanks to an enhanced nano-optical pyroelectric sensor. Sensing is obtained with the pyroelectric effect of lithium niobate (LN) in which, a suitable air-membrane photonic crystal cavity has been fabricated. The wavelength position of the cavity mode is tuned 11.5 nm for a temperature variation of only 32 °C. These results agree quite well with 3D-FDTD simulations that predict tunability of 12.5 nm for 32 °C. This photonic crystal temperature sensor shows a sensitivity of 0.359 nm/°C for an active length of only ~5.2 μm.

[1]  Filip Todorov,et al.  Temperature sensitivity of long-period gratings inscribed with a CO2 laser in optical fiber with graded-index cladding , 2006 .

[2]  Xinyong Dong,et al.  High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. , 2011, Optics letters.

[3]  F. Baida,et al.  Experimental evidence of enhanced electro-optic control on a lithium niobate photonic crystal superprism , 2010 .

[4]  Xiaochun Li,et al.  Design, fabrication and characterization of optical microring sensors on metal substrates , 2008 .

[5]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[6]  Rajan Jha,et al.  Highly Sensitive Plasmonic Temperature Sensor Based on Photonic Crystal Surface Plasmon Waveguide , 2013, Plasmonics.

[7]  Xinhuan Feng,et al.  High-birefringence fiber loop mirrors and their applications as sensors. , 2005, Applied optics.

[8]  A. Bettiol,et al.  Suspended slab and photonic crystal waveguides in lithium niobate , 2010 .

[9]  F. Baida,et al.  Enhanced Electro-optical Lithium Niobate Photonic Crystal Wire Waveguide on a Smart-cut Thin Film References and Links , 2022 .

[10]  Nadège Courjal,et al.  Acousto-optically tunable lithium niobate photonic crystal , 2010 .

[11]  A. Tünnermann,et al.  Ultra thin high index contrast photonic crystal slabs in lithium niobate , 2010 .

[12]  Sang‐Shin Lee,et al.  Temperature Compensated Refractometric Biosensor Exploiting Ring Resonators , 2009, IEEE Photonics Technology Letters.

[13]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[14]  Wan-Gyu Lee,et al.  Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. , 2010, Optics express.

[15]  Atomic sensors: Chip-scale magnetometers , 2007 .

[16]  F. Baida,et al.  6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity. , 2012, Optics express.

[17]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[18]  Sharee J. McNab,et al.  Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides , 2005 .

[19]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[20]  James D. Brownridge,et al.  Pyroelectric X-ray generator , 1992, Nature.

[21]  Eberhart Zrenner,et al.  Solar cells for the blind , 2012, Nature Photonics.

[22]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[23]  F. Baida,et al.  Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter , 2012 .

[24]  Yan-qing Lu,et al.  Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. , 2011, Optics express.

[25]  Maria-Pilar Bernal,et al.  Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons , 2006 .

[26]  Reinhard Geiss,et al.  Light propagation in a free-standing lithium niobate photonic crystal waveguide , 2010 .

[27]  M. Strano,et al.  Near-infrared optical sensors based on single-walled carbon nanotubes , 2004, Nature materials.