The large central charge limit of conformal blocks
暂无分享,去创建一个
[1] A. Litvinov,et al. Integrable structure, W-symmetry and AGT relation , 2011, 1109.4042.
[2] Vasyl Alba,et al. On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture , 2010, 1012.1312.
[3] S. Ribault,et al. Conformal Toda theory with a boundary , 2010, 1007.1293.
[4] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[5] A.V.Litvinov,et al. Correlation functions in conformal Toda field theory II , 2008, 0810.3020.
[6] A. Litvinov,et al. Correlation functions in conformal Toda field theory I , 2007, 0709.3806.
[7] A. Buras,et al. Charm-Quark Contribution to K L → μ + μ − at Next-to-Next-to-Leading Order , 2006 .
[8] H. Osborn,et al. Conformal partial waves and the operator product expansion , 2003, hep-th/0309180.
[9] Pierre Mathieu,et al. Conformal Field Theory , 1999 .
[10] Alexander M. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .
[11] G. Watts,et al. On the classification of quantum W-algebras , 1991, hep-th/9111062.
[12] V. Fateev,et al. The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry , 1988 .
[13] V. Fateev,et al. Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .
[14] Alexander B. Zamolodchikov,et al. Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .
[15] A. Zamolodchikov. Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude , 1984 .
[16] R. Gatto,et al. Properties of partial-wave amplitudes in conformal invariant field theories , 1975 .