The large central charge limit of conformal blocks

[1]  A. Litvinov,et al.  Integrable structure, W-symmetry and AGT relation , 2011, 1109.4042.

[2]  Vasyl Alba,et al.  On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture , 2010, 1012.1312.

[3]  S. Ribault,et al.  Conformal Toda theory with a boundary , 2010, 1007.1293.

[4]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[5]  A.V.Litvinov,et al.  Correlation functions in conformal Toda field theory II , 2008, 0810.3020.

[6]  A. Litvinov,et al.  Correlation functions in conformal Toda field theory I , 2007, 0709.3806.

[7]  A. Buras,et al.  Charm-Quark Contribution to K L → μ + μ − at Next-to-Next-to-Leading Order , 2006 .

[8]  H. Osborn,et al.  Conformal partial waves and the operator product expansion , 2003, hep-th/0309180.

[9]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[10]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[11]  G. Watts,et al.  On the classification of quantum W-algebras , 1991, hep-th/9111062.

[12]  V. Fateev,et al.  The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry , 1988 .

[13]  V. Fateev,et al.  Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .

[14]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[15]  A. Zamolodchikov Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude , 1984 .

[16]  R. Gatto,et al.  Properties of partial-wave amplitudes in conformal invariant field theories , 1975 .