Importance Gaussian Quadrature
暂无分享,去创建一个
[1] Mónica F. Bugallo,et al. Heretical Multiple Importance Sampling , 2016, IEEE Signal Processing Letters.
[2] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[3] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[4] A. S. Kronrod,et al. Nodes and weights of quadrature formulas : sixteen-place tables , 1965 .
[5] Ángel F. García-Fernández,et al. Gaussian Process Classification Using Posterior Linearization , 2018, IEEE Signal Processing Letters.
[6] Pau Closas,et al. Multiple Quadrature Kalman Filtering , 2012, IEEE Transactions on Signal Processing.
[7] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[8] Mónica F. Bugallo,et al. Multiple importance sampling with overlapping sets of proposals , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).
[9] O. Lahav,et al. exofit: orbital parameters of extrasolar planets from radial velocities , 2008, 0805.3532.
[10] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[11] Florian Heiss,et al. Likelihood approximation by numerical integration on sparse grids , 2008 .
[12] Jukka Corander,et al. An Adaptive Population Importance Sampler: Learning From Uncertainty , 2015, IEEE Transactions on Signal Processing.
[13] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[14] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[15] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[16] Luca Martino,et al. The Recycling Gibbs sampler for efficient learning , 2016, Digit. Signal Process..
[17] Luca Martino,et al. Improving population Monte Carlo: Alternative weighting and resampling schemes , 2016, Signal Process..
[18] Lei Liu,et al. The use of Gaussian quadrature for estimation in frailty proportional hazards models , 2008, Statistics in medicine.
[19] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[20] Walter Gautschi,et al. Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series , 1985 .
[21] Pau Closas,et al. Computational complexity reduction techniques for quadrature Kalman filters , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[22] Bernie D. Shizgal,et al. A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .
[23] Luca Martino,et al. Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..
[24] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[25] A. Schaeffer. Inequalities of A. Markoff and S. Bernstein for polynomials and related functions , 1941 .
[26] Pau Closas,et al. Gauss-Hermite Quadrature for non-Gaussian Inference via an Importance Sampling Interpretation , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).
[27] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[28] H. Sorenson,et al. Recursive bayesian estimation using gaussian sums , 1971 .
[29] Petar M. Djuric,et al. Adaptive Importance Sampling: The past, the present, and the future , 2017, IEEE Signal Processing Magazine.
[30] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[31] Paul Kabaila,et al. On Adaptive Gauss-Hermite Quadrature for Estimation in GLMM’s , 2019, Communications in Computer and Information Science.
[32] P. L’Ecuyer,et al. Random Number Generation and Quasi-Monte Carlo† , 2015 .
[33] Jukka Corander,et al. Layered adaptive importance sampling , 2015, Statistics and Computing.
[34] Robert J. Elliott,et al. Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.
[35] Qing Liu,et al. A note on Gauss—Hermite quadrature , 1994 .
[36] Wayne Luk,et al. Multivariate Gaussian Random Number Generation Targeting Reconfigurable Hardware , 2008, TRETS.
[37] M. P. Hobson,et al. Detecting extrasolar planets from stellar radial velocities using Bayesian evidence , 2010, 1012.5129.
[38] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[39] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[40] Simon Haykin,et al. Square-Root Quadrature Kalman Filtering , 2008, IEEE Transactions on Signal Processing.
[41] Robert Babuska,et al. Parametric Bayesian Filters for Nonlinear Stochastic Dynamical Systems: A Survey , 2013, IEEE Transactions on Cybernetics.
[42] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[43] C. Robert,et al. Rethinking the Effective Sample Size , 2018, International Statistical Review.
[44] Ross D. Shachter,et al. Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables , 1994, UAI.
[45] Dominik Ballreich,et al. Deterministic Numerical Integration , 2017 .
[46] George Tauchen,et al. Quadrature-Based Methods for Obtaining Approximate Solutions to Nonlinear Asset Pricing Models , 1991 .
[47] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[48] Luca Martino,et al. Efficient Adaptive Multiple Importance Sampling , 2019, 2019 27th European Signal Processing Conference (EUSIPCO).
[49] O. Ore. On functions with bounded derivatives , 1938 .
[50] W. Gautschi. A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .
[51] David Luengo,et al. Generalized Multiple Importance Sampling , 2015, Statistical Science.
[52] Art B. Owen,et al. Quasi-Monte Carlo Sampling by , 2003, SIGGRAPH 2003.
[53] W. Sickel,et al. Smolyak’s Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2006 .
[54] Leonidas J. Guibas,et al. Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.
[55] Mónica F. Bugallo,et al. Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.
[56] J. Marin,et al. Population Monte Carlo , 2004 .
[57] Pau Closas,et al. Uncertainty Exchange Through Multiple Quadrature Kalman Filtering , 2016, IEEE Signal Processing Letters.
[58] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[59] S. Haykin,et al. Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.
[60] Jean-Marie Cornuet,et al. Adaptive Multiple Importance Sampling , 2009, 0907.1254.
[61] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[62] D. Bates,et al. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .