Trajectory Outlier Detection

Detecting abnormal trajectories is an important task in research and industrial applications, which has attracted considerable attention in recent decades. This work studies the existing trajectory outlier detection algorithms in different industrial domains and applications, including maritime, smart urban transportation, video surveillance, and climate change domains. First, we review several algorithms for trajectory outlier detection. Second, different taxonomies are proposed regarding application-, output-, and algorithm-based levels. Third, evaluation of 10 trajectory outlier detection algorithms is performed on small, large, and big trajectory databases. Finally, future challenges and open issues with regard to trajectory outliers are derived and discussed. This survey offers a general overview of existing trajectory outlier detection algorithms in industrial informatics applications. As a result, mature solutions may be further developed by data mining and machine learning communities.

[1]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[2]  Martin Meckesheimer,et al.  Automatic outlier detection for time series: an application to sensor data , 2007, Knowledge and Information Systems.

[3]  Yingfu Huang,et al.  Identification of anomaly behavior of ships based on KNN and LOF combination algorithm , 2019 .

[4]  Harry Timmermans,et al.  Evaluating the Accuracy of GPS-based Taxi Trajectory Records , 2014 .

[5]  Lei Cao,et al.  Outlier Detection over Massive-Scale Trajectory Streams , 2017, ACM Trans. Database Syst..

[6]  Panos Markopoulos,et al.  Community heuristics for user interface evaluation of crowdsourcing platforms , 2019 .

[7]  Ruhul A. Sarker,et al.  Use of statistical outlier detection method in adaptive evolutionary algorithms , 2006, GECCO.

[8]  Göran Falkman,et al.  Online Learning and Sequential Anomaly Detection in Trajectories , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  R. Pincus Barnett, V., and Lewis T.: Outliers in Statistical Data. 3rd edition. J. Wiley & Sons 1994, XVII. 582 pp., £49.95 , 1995 .

[10]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[11]  Zhi-Hua Zhou,et al.  iBAT: detecting anomalous taxi trajectories from GPS traces , 2011, UbiComp '11.

[12]  Jerry Chun-Wei Lin,et al.  Adapted K-Nearest Neighbors for Detecting Anomalies on Spatio–Temporal Traffic Flow , 2019, IEEE Access.

[13]  Mengjie Zhang,et al.  Particle swarm optimisation for outlier detection , 2010, GECCO '10.

[14]  Shaogang Gong,et al.  Video Behavior Profiling for Anomaly Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Alberto Cano,et al.  A survey on graphic processing unit computing for large‐scale data mining , 2018, WIREs Data Mining Knowl. Discov..

[16]  Li Wei,et al.  SAXually Explicit Images: Finding Unusual Shapes , 2006, Sixth International Conference on Data Mining (ICDM'06).

[17]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[18]  Zhixiao Wang,et al.  An overview on trajectory outlier detection , 2019, Artificial Intelligence Review.

[19]  Paulo Cortez,et al.  Automatic visual detection of human behavior: A review from 2000 to 2014 , 2015, Expert Syst. Appl..

[20]  Peng Jiang,et al.  An Intelligent Outlier Detection Method With One Class Support Tucker Machine and Genetic Algorithm Toward Big Sensor Data in Internet of Things , 2019, IEEE Transactions on Industrial Electronics.

[21]  Michael G. Strintzis,et al.  Swarm Intelligence for Detecting Interesting Events in Crowded Environments , 2015, IEEE Transactions on Image Processing.

[22]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[23]  Ming Shao,et al.  Multi-View Low-Rank Analysis with Applications to Outlier Detection , 2018, ACM Trans. Knowl. Discov. Data.

[24]  Xian Wu,et al.  Crowdsourcing-based Urban Anomaly Prediction System for Smart Cities , 2016, CIKM.

[25]  Honghai Liu,et al.  Intelligent Video Systems and Analytics: A Survey , 2013, IEEE Transactions on Industrial Informatics.

[26]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers: algorithms and applications (a summary of results) , 2001, KDD '01.

[27]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[28]  Karsten Steinhaeuser,et al.  Data Mining for Climate Change and Impacts , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[29]  Halina Kwasnicka,et al.  Nature Inspired Methods and Their Industry Applications—Swarm Intelligence Algorithms , 2018, IEEE Transactions on Industrial Informatics.

[30]  Djamel Djenouri,et al.  SS-FIM: Single Scan for Frequent Itemsets Mining in Transactional Databases , 2017, PAKDD.

[31]  Tieniu Tan,et al.  A system for learning statistical motion patterns , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  J. Tolvi,et al.  Genetic algorithms for outlier detection and variable selection in linear regression models , 2004, Soft Comput..

[33]  Milos Manic,et al.  Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions , 2014, IEEE Transactions on Industrial Informatics.

[34]  Siyuan Liu,et al.  Anomaly Detection from Incomplete Data , 2014, TKDD.

[35]  Cristina Conde,et al.  Subjective Traffic Safety Experts' Knowledge for Driving-Risk Definition , 2014, IEEE Transactions on Intelligent Transportation Systems.

[36]  Lin Sun,et al.  iBOAT: Isolation-Based Online Anomalous Trajectory Detection , 2013, IEEE Transactions on Intelligent Transportation Systems.

[37]  Jae-Gil Lee,et al.  Trajectory Outlier Detection: A Partition-and-Detect Framework , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[38]  Hichem Snoussi,et al.  An On-Line and Adaptive Method for Detecting Abnormal Events in Videos Using Spatio-Temporal ConvNet , 2019, Applied Sciences.

[39]  Tarek Sayed,et al.  A framework for automated road-users classification using movement trajectories , 2013 .

[40]  Thomas J. Misa,et al.  An interview with Edsger W. Dijkstra , 2010, Commun. ACM.

[41]  Aoying Zhou,et al.  Outlier Detection over Distributed Trajectory Streams , 2018, SDM.

[42]  DjenouriDjamel,et al.  Machine Learning for Smart Building Applications , 2019 .

[43]  Amjad Rehman,et al.  Features extraction for soccer video semantic analysis: current achievements and remaining issues , 2012, Artificial Intelligence Review.

[44]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[45]  Djamel Djenouri,et al.  A Survey on Urban Traffic Anomalies Detection Algorithms , 2019, IEEE Access.

[46]  Lin Sun,et al.  Real Time Anomalous Trajectory Detection and Analysis , 2012, Mobile Networks and Applications.

[47]  Tao Wang,et al.  Feature Grouping-Based Outlier Detection Upon Streaming Trajectories , 2017, IEEE Transactions on Knowledge and Data Engineering.

[48]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[49]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[50]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[51]  Alberto Cano,et al.  An ensemble approach to multi-view multi-instance learning , 2017, Knowl. Based Syst..

[52]  Eamonn J. Keogh,et al.  Disk aware discord discovery: finding unusual time series in terabyte sized datasets , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[53]  Yonglong Luo,et al.  Trajectory outlier detection approach based on common slices sub-sequence , 2017, Applied Intelligence.

[54]  Maurizio Filippone,et al.  A comparative evaluation of outlier detection algorithms: Experiments and analyses , 2018, Pattern Recognit..

[55]  Lei Chen,et al.  Spatial crowdsourcing: a survey , 2019, The VLDB Journal.

[56]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[57]  Arthur Zimek,et al.  Outlier Detection in Urban Traffic Data , 2018, WIMS.

[58]  Deng Cai,et al.  Sparse Coding Guided Spatiotemporal Feature Learning for Abnormal Event Detection in Large Videos , 2019, IEEE Transactions on Multimedia.

[59]  Jamie B. Coble,et al.  Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data , 2019, IEEE Transactions on Industrial Informatics.

[60]  Yifeng Gao,et al.  TrajViz: A Tool for Visualizing Patterns and Anomalies in Trajectory , 2017, ECML/PKDD.

[61]  Michael G. Pecht,et al.  Anomaly Detection of Light-Emitting Diodes Using the Similarity-Based Metric Test , 2014, IEEE Transactions on Industrial Informatics.

[62]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[63]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.

[64]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[65]  Jingying Chen,et al.  Noisy logo recognition using line segment Hausdorff distance , 2003, Pattern Recognit..

[66]  Derya Birant,et al.  Spatio-temporal outlier detection in large databases , 2006, 28th International Conference on Information Technology Interfaces, 2006..

[67]  Kun Qin,et al.  Detecting Anomalous Trajectories Using the Dempster-Shafer Evidence Theory Considering Trajectory Features from Taxi GNSS Data , 2018, Inf..

[68]  Weiwei Sun,et al.  A Fast Trajectory Outlier Detection Approach via Driving Behavior Modeling , 2017, CIKM.

[69]  Tao Zhang,et al.  Ship Trajectory Outlier Detection Service System Based on Collaborative Computing , 2018, 2018 IEEE World Congress on Services (SERVICES).

[70]  An-Pin Chen,et al.  Fuzzy discriminant analysis with outlier detection by genetic algorithm , 2004, Comput. Oper. Res..

[71]  Hui Xiong,et al.  Top-Eye: top-k evolving trajectory outlier detection , 2010, CIKM.

[72]  David J. Barry,et al.  Using machine learning methods in airline flight data monitoring to generate new operational safety knowledge from existing data , 2019, Safety Science.

[73]  Young-Koo Lee,et al.  Road segment partitioning towards anomalous trajectory detection for surveillance applications , 2013, 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI).

[74]  Marco Comuzzi,et al.  Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem , 2017, Inf. Sci..

[75]  Einoshin Suzuki,et al.  Ensemble anomaly detection from multi-resolution trajectory features , 2013, Data Mining and Knowledge Discovery.

[76]  Alessia Saggese,et al.  Dynamic Scene Understanding for Behavior Analysis Based on String Kernels , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[77]  Shaojie Qiao,et al.  An efficient outlying trajectories mining approach based on relative distance , 2012, Int. J. Geogr. Inf. Sci..

[78]  Meera Narvekar,et al.  Trajectory Outlier Detection for Traffic Events: A Survey , 2018 .

[79]  Qi Li,et al.  Based local density trajectory outlier detection with partition-and-detect framework , 2017, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[80]  Hans-Peter Kriegel,et al.  Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection , 2012, Data Mining and Knowledge Discovery.

[81]  Yunhui Liu,et al.  A Noninvasive System for the Automatic Detection of Gliomas Based on Hybrid Features and PSO-KSVM , 2019, IEEE Access.

[82]  Arthur Zimek,et al.  Ensembles for unsupervised outlier detection: challenges and research questions a position paper , 2014, SKDD.

[83]  Elio Masciari,et al.  Trajectory Outlier Detection Using an Analytical Approach , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[84]  Gian Luca Foresti,et al.  Trajectory-Based Anomalous Event Detection , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[85]  Zhang Xu,et al.  Cluster-Based Congestion Outlier Detection Method on Trajectory Data , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[86]  Göran Falkman,et al.  Sequential Conformal Anomaly Detection in trajectories based on Hausdorff distance , 2011, 14th International Conference on Information Fusion.

[87]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[88]  Youcef Djenouri,et al.  A general-purpose distributed pattern mining system , 2020, Applied Intelligence.

[89]  Yael Pritch,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008 1 Non-Chronological Video , 2022 .

[90]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[91]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[92]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[93]  Feng Xia,et al.  LoTAD: long-term traffic anomaly detection based on crowdsourced bus trajectory data , 2017, World Wide Web.

[94]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[95]  Yong Gao,et al.  Detecting trajectory outliers based on spark , 2017, 2017 25th International Conference on Geoinformatics.

[96]  Ejaz Ahmed,et al.  Real-time big data processing for anomaly detection: A Survey , 2019, Int. J. Inf. Manag..

[97]  Anind K. Dey,et al.  Maximum Entropy Inverse Reinforcement Learning , 2008, AAAI.

[98]  Xi Zheng,et al.  Crowdsourcing Mechanism for Trust Evaluation in CPCS Based on Intelligent Mobile Edge Computing , 2019, ACM Trans. Intell. Syst. Technol..

[99]  Hendrik T. Macedo,et al.  Grouping Similar Trajectories for Carpooling Purposes , 2015, 2015 Brazilian Conference on Intelligent Systems (BRACIS).

[100]  Shaohui Mei,et al.  Video summarization via minimum sparse reconstruction , 2015, Pattern Recognit..

[101]  Gian Antonio Susto,et al.  Machine Learning for Predictive Maintenance: A Multiple Classifier Approach , 2015, IEEE Transactions on Industrial Informatics.

[102]  Joel J. P. C. Rodrigues,et al.  A comprehensive survey on network anomaly detection , 2018, Telecommunication Systems.

[103]  Sayan Ranu,et al.  MANTRA: A Scalable Approach to Mining Temporally Anomalous Sub-trajectories , 2016, KDD.

[104]  Md. Rafiqul Islam,et al.  A survey of anomaly detection techniques in financial domain , 2016, Future Gener. Comput. Syst..

[105]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[106]  Jerry Chun-Wei Lin,et al.  A Data-Driven Approach for Twitter Hashtag Recommendation , 2020, IEEE Access.

[107]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[108]  Simant Prakoonwit,et al.  Big data analytics—A review of data‐mining models for small and medium enterprises in the transportation sector , 2018, WIREs Data Mining Knowl. Discov..

[109]  Xingshe Zhou,et al.  Disorientation detection by mining GPS trajectories for cognitively-impaired elders , 2015, Pervasive Mob. Comput..

[110]  Hongxing He,et al.  A comparative study of RNN for outlier detection in data mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[111]  Lei Cao,et al.  Detecting moving object outliers in massive-scale trajectory streams , 2014, KDD.

[112]  Raghavendra Chalapathy University of Sydney,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.

[113]  Nasir Saeed,et al.  Outlier Detection and Optimal Anchor Placement for 3-D Underwater Optical Wireless Sensor Network Localization , 2018, IEEE Transactions on Communications.

[114]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[115]  Jugal K. Kalita,et al.  A Survey of Outlier Detection Methods in Network Anomaly Identification , 2011, Comput. J..

[116]  Jun Li,et al.  Clustering With Outlier Removal , 2018, IEEE Transactions on Knowledge and Data Engineering.

[117]  A. Karpatne,et al.  Spatio-Temporal Data Mining: A Survey of Problems and Methods , 2017, ArXiv.

[118]  Yixiang Chen,et al.  Detecting Anomalous Trajectories and Behavior Patterns Using Hierarchical Clustering from Taxi GPS Data , 2018, ISPRS Int. J. Geo Inf..

[119]  Khalid Benabdeslem,et al.  Unsupervised outlier detection for time series by entropy and dynamic time warping , 2018, Knowledge and Information Systems.

[120]  Liye Zhang,et al.  Traffic Pattern Mining and Forecasting Technologies in Maritime Traffic Service Networks: A Comprehensive Survey , 2020, IEEE Transactions on Intelligent Transportation Systems.

[121]  Cheng Long,et al.  A New Framework for Traffic Anomaly Detection , 2014, SDM.

[122]  Fabrizio Angiulli,et al.  Detecting distance-based outliers in streams of data , 2007, CIKM '07.

[123]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[124]  Clayton D. Scott,et al.  Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[125]  Mohan M. Trivedi,et al.  A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[126]  Jie Zhu,et al.  Time-Dependent Popular Routes Based Trajectory Outlier Detection , 2015, WISE.

[127]  Ying Gao,et al.  Anomalous Trajectory Detection Between Regions of Interest Based on ANPR System , 2018, ICCS.

[128]  Sankar K. Pal,et al.  Rough Sets, Kernel Set, and Spatiotemporal Outlier Detection , 2014, IEEE Transactions on Knowledge and Data Engineering.

[129]  Chun-Wei Lin,et al.  Comparative Study on Trajectory Outlier Detection Algorithms , 2019, 2019 International Conference on Data Mining Workshops (ICDMW).

[130]  Ahmad F. Klaib,et al.  Intelligent Transportation and Control Systems Using Data Mining and Machine Learning Techniques: A Comprehensive Study , 2019, IEEE Access.

[131]  Cristina Conde,et al.  Outlier trajectory detection through a context-aware distance , 2018, Pattern Analysis and Applications.

[132]  Hyerim Bae,et al.  Smoothing of Trajectory Data Recorded in Harsh Environments and Detection of Outlying Trajectories , 2018 .

[133]  Anupam Agrawal,et al.  A survey on activity recognition and behavior understanding in video surveillance , 2012, The Visual Computer.

[134]  Alfredo Petrosino,et al.  Granular trajectory based anomaly detection for surveillance , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[135]  Po-Ruey Lei,et al.  A framework for anomaly detection in maritime trajectory behavior , 2015, Knowledge and Information Systems.

[136]  Pawel Forczmanski,et al.  Automatic Analysis of Vehicle Trajectory Applied to Visual Surveillance , 2015, IP&C.

[137]  Hans-Peter Kriegel,et al.  LoOP: local outlier probabilities , 2009, CIKM.

[138]  Djamel Djenouri,et al.  Exploiting GPU and cluster parallelism in single scan frequent itemset mining , 2019, Inf. Sci..

[139]  Shashi Shekhar,et al.  Ring-Shaped Hotspot Detection: A Summary of Results , 2014, 2014 IEEE International Conference on Data Mining.

[140]  Wenjie Hu,et al.  Robust support vector machine with bullet hole image classification , 2002 .

[141]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[142]  Aggelos K. Katsaggelos,et al.  A Dynamic Hierarchical Clustering Method for Trajectory-Based Unusual Video Event Detection , 2009, IEEE Transactions on Image Processing.

[143]  Yanmin Zhu,et al.  A Survey on Trajectory Data Mining: Techniques and Applications , 2016, IEEE Access.

[144]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[145]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[146]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[147]  Jingping Bi,et al.  Sub-trajectory- and Trajectory-Neighbor-based Outlier Detection over Trajectory Streams , 2018, PAKDD.

[148]  Meng Wang,et al.  Generative Adversarial Active Learning for Unsupervised Outlier Detection , 2018, IEEE Transactions on Knowledge and Data Engineering.

[149]  Jerry Chun-Wei Lin,et al.  Exploring Pattern Mining Algorithms for Hashtag Retrieval Problem , 2020, IEEE Access.