Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex

The three-dimensional (3D) structure of neural circuits represents an essential constraint for information flow in the brain. Methods to directly monitor streams of excitation, at subcellular and millisecond resolution, are at present lacking. Here, we describe a pipeline of tools that allow investigating information flow by simulating electrical signals that propagate through anatomically realistic models of average neural networks. The pipeline comprises three blocks. First, we review tools that allow fast and automated acquisition of 3D anatomical data, such as neuron soma distributions or reconstructions of dendrites and axons from in vivo labeled cells. Second, we introduce NeuroNet, a tool for assembling the 3D structure and wiring of average neural networks. Finally, we introduce a simulation framework, NeuroDUNE, to investigate structure-function relationships within networks of full-compartmental neuron models at subcellular, cellular and network levels. We illustrate the pipeline by simulations of a reconstructed excitatory network formed between the thalamus and spiny stellate neurons in layer 4 (L4ss) of a cortical barrel column in rat vibrissal cortex. Exciting the ensemble of L4ss neurons with realistic input from an ensemble of thalamic neurons revealed that the location-specific thalamocortical connectivity may result in location-specific spiking of cortical cells. Specifically, a radial decay in spiking probability toward the column borders could be a general feature of signal flow in a barrel column. Our simulations provide insights of how anatomical parameters, such as the subcellular organization of synapses, may constrain spiking responses at the cellular and network levels.

[1]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[2]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[3]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[4]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[5]  A. Peters Thalamic input to the cerebral cortex , 1979, Trends in Neurosciences.

[6]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[7]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[8]  E. White Thalamocortical synaptic relations: A review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex , 1979, Brain Research Reviews.

[9]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[10]  D. Pinault,et al.  A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin , 1996, Journal of Neuroscience Methods.

[11]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[12]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[13]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[14]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment , 1991, The Journal of comparative neurology.

[15]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[16]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[17]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[18]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[19]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[20]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[22]  Cpj de Kock,et al.  Reconstruction of an average cortical column in silico , 2007, Brain Research Reviews.

[23]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[24]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[25]  Karel Svoboda,et al.  The Past, Present, and Future of Single Neuron Reconstruction , 2011, Neuroinformatics.

[26]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[27]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[28]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[29]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[30]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[31]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Henry Markram,et al.  Identifying, tabulating, and analyzing contacts between branched neuron morphologies , 2008, IBM J. Res. Dev..

[33]  Hans-Christian Hege,et al.  Automatic alignment of stacks of filament data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[34]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[35]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[36]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[37]  Peter Bastian,et al.  Couplex Benchmark Computations Obtained with the Software Toolbox UG , 2004 .

[38]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[39]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[40]  Nuno Maçarico da Costa,et al.  How Thalamus Connects to Spiny Stellate Cells in the Cat's Visual Cortex , 2011, The Journal of Neuroscience.

[41]  Randy M Bruno,et al.  Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology. , 2007, Journal of biomedical optics.

[42]  W. Holmes The role of dendritic diameters in maximizing the effectiveness of synaptic inputs , 1989, Brain Research.

[43]  Stefan Lang,et al.  Large‐scale density‐driven flow simulations using parallel unstructured Grid adaptation and local multigrid methods , 2005, Concurr. Pract. Exp..

[44]  Badrinath Roysam,et al.  Automated Three-Dimensional Tracing of Neurons in Confocal and Brightfield Images , 2003, Microscopy and Microanalysis.

[45]  B. Sakmann,et al.  Journal of Neuroscience Methods Automated Three-dimensional Detection and Counting of Neuron Somata , 2022 .

[46]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[47]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[48]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[49]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[50]  Michael J. Gutnick,et al.  NMDA Receptors in Layer 4 Spiny Stellate Cells of the Mouse Barrel Cortex Contain the NR2C Subunit , 2006, The Journal of Neuroscience.

[51]  M. Hines,et al.  Efficient computation of branched nerve equations. , 1984, International journal of bio-medical computing.

[52]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[53]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[54]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[55]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[56]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[57]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[58]  John R Huguenard,et al.  Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons , 2006, The Journal of Neuroscience.

[59]  Kurt Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[60]  T. Sejnowski,et al.  Reduced compartmental models of neocortical pyramidal cells , 1993, Journal of Neuroscience Methods.

[61]  P. Knabner,et al.  Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.

[62]  Bert Sakmann,et al.  Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole‐cell voltage recording and morphological reconstruction , 2002, The Journal of physiology.

[63]  M Oberlaender,et al.  Shack‐Hartmann wave front measurements in cortical tissue for deconvolution of large three‐dimensional mosaic transmitted light brightfield micrographs , 2009, Journal of microscopy.

[64]  J. C. Nelson,et al.  Excitatory inputs to spiny cells in layers 4 and 6 of cat striate cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  H. Bateman Partial Differential Equations of Mathematical Physics , 1932 .

[67]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[68]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[69]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[70]  R.D. Traub,et al.  Large scale simulations of the hippocampus , 1988, IEEE Engineering in Medicine and Biology Magazine.

[71]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[72]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[73]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[74]  Kevin L. Briggman,et al.  3D structural imaging of the brain with photons and electrons , 2008, Current Opinion in Neurobiology.

[75]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[76]  Michael D. Ehlers,et al.  Molecular genetics and imaging technologies for circuit-based neuroanatomy , 2009, Nature.

[77]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[78]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[79]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[80]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[81]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[82]  Randy M Bruno,et al.  Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. , 2008, Cerebral cortex.

[83]  Idan Segev,et al.  The theoretical foundation of dendritic function: Selected papers of Wilfrid Rall with commentaries , 1994 .

[84]  Hans-Christian Hege,et al.  Interactive Visualization – a Key Prerequisite for Reconstruction of Anatomically Realistic Neural Networks , 2012 .

[85]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.