Single grating mirror intracavity stretcher design for chirped pulse regenerative amplification

We demonstrated for the first time, to the best of our knowledge a new intracavity pulse stretching design, employing a single grating-mirror based on a leaky-mode grating-waveguide design. The extremely compact and flexible layout allows for femtosecond pulses to be easily stretched up to nanosecond durations. The stretcher was implemented in a diode-pumped Yb:CALGO regenerative amplifier followed by a standard transmission grating compressor. We demonstrated sub-200 fs long pulses (stretched pulses ≈ 110 ps) with a maximum energy of 205 μJ at 20 kHz repetition rate. As a proof of the robustness and potential energy scaling of leaky-mode grating-waveguide intracavity stretcher, energies up to 700 μJ and 400 ps long pulses before compression at a lower repetition rate of 10 kHz, have been achieved. A simple model is proposed to investigate the cavity behavior in presence of induced spatial chirp.

[1]  J Aus der Au,et al.  High pulse energy multiwatt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers. , 2014, Optics express.

[2]  W. Marsden I and J , 2012 .

[3]  G. Mourou,et al.  A spatially dispersive regenerative amplifier for ultrabroadband pulses , 1999 .

[4]  T. Graf,et al.  Linearly polarized, narrow-linewidth, and tunable Yb:YAG thin-disk laser. , 2012, Optics letters.

[5]  V. Yanovsky,et al.  Novel all-reflective stretcher for chirped-pulse amplification of ultrashort pulses , 2000, IEEE Journal of Quantum Electronics.

[6]  Yoann Zaouter,et al.  Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier. , 2010, Optics letters.

[7]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[8]  Andreas Ostendorf,et al.  Ablation and cutting of planar silicon devices using femtosecond laser pulses , 2003 .

[9]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[10]  W. White,et al.  Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems. , 1993, Optics letters.

[11]  F. Kärtner,et al.  High-energy kHz Yb:KYW dual-crystal regenerative amplifier. , 2014, Optics express.

[12]  C. Hönninger,et al.  Diode-pumped thin-disk Yb:YAG regenerative amplifier , 1997 .

[13]  Jeffrey A. Squier,et al.  Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification , 1997 .

[14]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[15]  Yoann Zaouter,et al.  High-energy chirped- and divided-pulse Sagnac femtosecond fiber amplifier. , 2015, Optics letters.

[16]  Thomas Graf,et al.  Broadband pulse compression gratings with measured 99.7% diffraction efficiency. , 2014, Optics letters.

[17]  B. Lemoff,et al.  Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses. , 1993, Optics letters.

[18]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[19]  G. Fleming,et al.  Ti:sapphire regenerative amplifier for ultrashort high-power multikilohertz pulses without an external stretcher. , 1995, Optics letters.

[20]  K. Sugioka,et al.  Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture , 2005 .

[21]  Adolf Giesen,et al.  Diode-pumped thin-disk Yb:YAG regenerative amplifier , 1998 .