Computational Cam clay plasticity using second-order cone programming

Abstract A new numerical scheme for critical state elastoplasticity is presented and detailed with special reference to the modified Cam clay model. The scheme is based on an incremental variational formulation whose discrete approximation gives rise to a second-order cone program that is solved using a newly developed algorithm. A number of examples demonstrating the capabilities of the new scheme are given.

[1]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[2]  L. Wang,et al.  Formulation of the return mapping algorithm for elastoplastic soil models , 2004 .

[3]  D. Potts,et al.  Finite Element Analysis in Geotechnical Engineering: Volume Two - Application , 1999 .

[4]  Gary F. Dargush,et al.  Numerical collapse simulation of large‐scale structural systems using an optimization‐based algorithm , 2009 .

[5]  Andrew J. Whittle,et al.  Integration of the modified Cam-Clay model in non-linear finite element analysis , 1992 .

[6]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[7]  Giulio Maier,et al.  Quadratic programming and theory of elastic-perfectly plastic structures , 1968 .

[8]  Scott W. Sloan,et al.  Aspects of finite element implementation of critical state models , 2000 .

[9]  P. Wriggers,et al.  An interior‐point algorithm for elastoplasticity , 2007 .

[10]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[11]  K. Krabbenhoft,et al.  Associated plasticity for nonassociated frictional materials , 2010 .

[12]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part II: implicit integration of constitutive equation based a nonlinear elastic stress predictor , 1991 .

[13]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[14]  A. Schofield,et al.  Yielding of Clays in States Wetter than Critical , 1963 .

[15]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[16]  Scott W. Sloan,et al.  Associated computational plasticity schemes for nonassociated frictional materials , 2012 .

[17]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[18]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[21]  Mark Randolph,et al.  On modelling the unloading-reloading behaviour of soils , 1978 .

[22]  K. M. Liew,et al.  Elasto‐plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming , 2002 .

[23]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[24]  Francis Tin-Loi,et al.  Performance of the p-version finite element method for limit analysis , 2003 .

[25]  K. H. Roscoe,et al.  Mechanical behaviour of an idealized 'wet' clay , 1963 .

[26]  Peter Frederic Thomson,et al.  Quadratic programming method in numerical simulation of metal forming process , 2002 .

[27]  Hai‐Sui Yu,et al.  Plasticity and geotechnics , 2006 .

[28]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[29]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[30]  Giulio Maier,et al.  Incremental elastoplastic analysis and quadratic optimization , 1970 .

[31]  Antonio Gens,et al.  Critical state models in computational geomechanics , 1988 .

[32]  Kristian Krabbenhoft,et al.  A variational principle of elastoplasticity and its application to the modeling of frictional materials , 2009 .

[33]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[34]  G. Ventura,et al.  Numerical analysis of Augmented Lagrangian algorithms in complementary elastoplasticity , 2004 .

[35]  Ray Kai Leung Su,et al.  Parametric quadratic programming method for elastic contact fracture analysis , 2002 .

[36]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, part I: implicit integration of elastoplastic constitutive relations , 1990 .

[37]  R. Weinstock Calculus of Variations: with Applications to Physics and Engineering , 1952 .

[38]  Formulation of non-standard dissipative behavior of geomaterials , 2005 .

[39]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.