Tactile-visual cross-modal shape matching: a functional MRI study.

The process and location of integration of information from different sensory modalities remains controversial. We used functional MRI to investigate the neural representation of cross-modal matching between tactile and visual shape information in eleven normal volunteers. During the scan, patterns of 2D shapes were presented both tactually and visually, simultaneously. Four different matching tasks were performed: tactile-tactile with eyes closed (TT), tactile-tactile with visual input (TTv), visual-visual with tactile input (VVt), and tactile-visual (TV). The TT task activated the contralateral primary sensorimotor area, and the postcentral gyrus, superior parietal lobules, anterior portion of the intraparietal sulcus, secondary somatosensory cortex, thalamus, dorsal premotor area, cerebellum, and supplementary motor area bilaterally, without occipital involvement. Visual matching activated the primary visual cortex and the lingual and fusiform gyri bilaterally. A cross-modal area was identified by subtracting TTv images from TV images, subtracting VVt images from TV images, and then determining common active areas. There was one discrete area that was active bilaterally; the posterior intraparietal sulcus close to the parieto-occipital sulcus. These data suggest that shape information from different sensory modalities may be integrated in the posterior intraparietal sulcus during tactile-visual matching tasks.

[1]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[2]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[3]  Manabu Honda,et al.  Critical Period for Cross-Modal Plasticity in Blind Humans: A Functional MRI Study , 2002, NeuroImage.

[4]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[5]  P. Roland,et al.  Shape and roughness activate different somatosensory areas in the human brain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. M. Harris,et al.  Selective right parietal lobe activation during mental rotation: a parametric PET study. , 2000, Brain : a journal of neurology.

[7]  Y. Iwamura Hierarchical somatosensory processing , 1998, Current Opinion in Neurobiology.

[8]  G. Ettlinger,et al.  Cross-modal performance: behavioural processes, phylogenetic considerations and neural mechanisms , 1990, Behavioural Brain Research.

[9]  R Kawashima,et al.  Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the "mind's eye". , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[11]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[12]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[13]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[14]  J. Fodor,et al.  The Modularity of Mind: An Essay on Faculty Psychology , 1984 .

[15]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[16]  Karl J. Friston,et al.  Stochastic Designs in Event-Related fMRI , 1999, NeuroImage.

[17]  Van Essen Dc Behind the optic nerve: an inside view of the primate visual system. , 1995 .

[18]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[20]  M. Hallett,et al.  Neural networks for Braille reading by the blind. , 1998 .

[21]  H. Sakata,et al.  Parietal neurons related to memory-guided hand manipulation. , 1996, Journal of neurophysiology.

[22]  E. Deibert,et al.  Neural pathways in tactile object recognition , 1999, Neurology.

[23]  P E Roland,et al.  Cross-Modal Transfer of Information between the Tactile and the Visual Representations in the Human Brain: A Positron Emission Tomographic Study , 1998, The Journal of Neuroscience.

[24]  M. Petrides,et al.  Cross-modal matching in the monkey after discrete temporal lobe lesions , 1975, Nature.

[25]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[26]  Ryuta Kawashima,et al.  A PET Study of Somatosensory Discrimination in Man. Microgeometry Versus Macrogeometry , 1994, The European journal of neuroscience.

[27]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[28]  M. Denis,et al.  Reopening the Mental Imagery Debate: Lessons from Functional Anatomy , 1998, NeuroImage.

[29]  Mark Hallett,et al.  Gender Difference in Premotor Activity during Active Tactile Discrimination , 2000, NeuroImage.

[30]  P. Roland,et al.  Focal increase of cerebral blood flow during stereognostic testing in man. , 1976, Archives of neurology.

[31]  J. Aggleton,et al.  The functional anatomy of visual-tactile integration in man: a study using positron emission tomography , 2000, Neuropsychologia.

[32]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[33]  M. Goldberg,et al.  Oculocentric spatial representation in parietal cortex. , 1995, Cerebral cortex.

[34]  Christian Bohm,et al.  Somatosensory Discrimination of Shape: Tactile Exploration and Cerebral Activation , 1991, The European journal of neuroscience.

[35]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[36]  T. Hendler,et al.  Visuo-haptic object-related activation in the ventral visual pathway , 2001, Nature Neuroscience.

[37]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Hallett,et al.  Activation of the primary visual cortex by Braille reading in blind subjects , 1996, Nature.

[39]  M Petrides,et al.  Cross-modal matching and the primate frontal cortex. , 1976, Science.

[40]  T. Schormann,et al.  Direction of cross‐modal information transfer affects human brain activation: a PET study , 2002 .

[41]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[42]  G. Ettlinger,et al.  Cross-Modal Performance in Patients with Cerebral Lesions , 1982, Cortex.

[43]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[44]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[45]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[46]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[47]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[48]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Anthony Randal McIntosh,et al.  Transperceptual Encoding and Retrieval Processes in Memory: A PET Study of Visual and Haptic Objects , 2001, NeuroImage.