GenomeView: a next-generation genome browser

Due to ongoing advances in sequencing technologies, billions of nucleotide sequences are now produced on a daily basis. A major challenge is to visualize these data for further downstream analysis. To this end, we present GenomeView, a stand-alone genome browser specifically designed to visualize and manipulate a multitude of genomics data. GenomeView enables users to dynamically browse high volumes of aligned short-read data, with dynamic navigation and semantic zooming, from the whole genome level to the single nucleotide. At the same time, the tool enables visualization of whole genome alignments of dozens of genomes relative to a reference sequence. GenomeView is unique in its capability to interactively handle huge data sets consisting of tens of aligned genomes, thousands of annotation features and millions of mapped short reads both as viewer and editor. GenomeView is freely available as an open source software package.

[1]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[2]  Albert J. Vilella,et al.  Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis , 2010, PLoS biology.

[3]  Michael Brudno,et al.  Savant: genome browser for high-throughput sequencing data , 2010, Bioinform..

[4]  C. Ball,et al.  TB database 2010: overview and update. , 2010, Tuberculosis.

[5]  G. Hon,et al.  Next-generation genomics: an integrative approach , 2010, Nature Reviews Genetics.

[6]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[7]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[8]  Bang Wong,et al.  Visualizing biological data—now and in the future , 2010, Nature Methods.

[9]  I. Dubchak,et al.  Visualizing genomes: techniques and challenges , 2010, Nature Methods.

[10]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[11]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[12]  Paul D. Shaw,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[13]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[14]  Y. van de Peer,et al.  PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants[W] , 2009, The Plant Cell Online.

[15]  Heinrich Magnus Manske,et al.  LookSeq: a browser-based viewer for deep sequencing data. , 2009, Genome research.

[16]  David Edwards,et al.  De novo sequencing of plant genomes using second-generation technologies , 2009, Briefings Bioinform..

[17]  Ann E. Loraine,et al.  The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets , 2009, Bioinform..

[18]  Mihai Pop,et al.  Genome assembly reborn: recent computational challenges , 2009, Briefings Bioinform..

[19]  Hui Guo,et al.  MapView: visualization of short reads alignment on a desktop computer , 2009, Bioinform..

[20]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[21]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[22]  Andrew M. Jenkinson,et al.  Ensembl 2009 , 2008, Nucleic Acids Res..

[23]  Stefan Niemann,et al.  High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography , 2008, PLoS biology.

[24]  Y. Amy Tang,et al.  Genome Environment Browser (GEB): a dynamic browser for visualising high-throughput experimental data in the context of genome features , 2008, BMC Bioinformatics.

[25]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[26]  J. Bähler,et al.  Next-generation sequencing: applications beyond genomes , 2008, Biochemical Society transactions.

[27]  Gabor T. Marth,et al.  EagleView: a genome assembly viewer for next-generation sequencing technologies. , 2008, Genome research.

[28]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[29]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[30]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[31]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[32]  David Hernández,et al.  De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. , 2008, Genome research.

[33]  M. Freeling,et al.  How to usefully compare homologous plant genes and chromosomes as DNA sequences. , 2008, The Plant journal : for cell and molecular biology.

[34]  Gabor T. Marth,et al.  Whole-genome sequencing and variant discovery in C. elegans , 2008, Nature Methods.

[35]  S. Schuster Next-generation sequencing transforms today's biology , 2008, Nature Methods.

[36]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[37]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[38]  S. Gabriel,et al.  High-throughput oncogene mutation profiling in human cancer , 2007, Nature Genetics.

[39]  Jill P. Mesirov,et al.  Combo: a whole genome comparative browser , 2006, Bioinform..

[40]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[41]  Randall A. Bolanos,et al.  Whole-genome shotgun assembly and comparison of human genome assemblies , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  E. Birney,et al.  Apollo: a sequence annotation editor , 2002, Genome Biology.

[43]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[44]  Lior Pachter,et al.  VISTA : visualizing global DNA sequence alignments of arbitrary length , 2000, Bioinform..

[45]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[46]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[47]  R Staden,et al.  The staden sequence analysis package , 1996, Molecular biotechnology.