Fast long-distance transport of cold cesium atoms

Till Klostermann,1, 2, 3 Cesar R. Cabrera,1, 2, 3 Hendrik von Raven,1, 2, 3 Julian F. Wienand,1, 2, 3 Christian Schweizer,1, 2, 4 Immanuel Bloch,1, 2, 3 and Monika Aidelsburger1, 2 1Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstr. 4, D-80799 München, Germany 2Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany 3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany 4Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany (Dated: September 9, 2021)

[1]  Julian F. Wienand,et al.  Programmable interactions and emergent geometry in an array of atom clouds , 2021, Nature.

[2]  M. Lewenstein,et al.  Cold atoms meet lattice gauge theory , 2021, Philosophical Transactions of the Royal Society A.

[3]  G. Unnikrishnan,et al.  Long distance optical transport of ultracold atoms: A compact setup using a Moiré lens. , 2021, The Review of scientific instruments.

[4]  D. Barredo,et al.  Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms , 2020, Nature.

[5]  M. Lukin,et al.  Quantum phases of matter on a 256-atom programmable quantum simulator , 2020, Nature.

[6]  Quantum gas microscopy for single atom and spin detection , 2020, Nature Physics.

[7]  Loic Henriet,et al.  Quantum computing with neutral atoms , 2020, Quantum.

[8]  T. Fukuhara,et al.  Tools for quantum simulation with ultracold atoms in optical lattices , 2020, Nature Reviews Physics.

[9]  Jad C. Halimeh,et al.  Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator , 2020, Nature.

[10]  P. Hauke,et al.  A scalable realization of local U(1) gauge invariance in cold atomic mixtures , 2020, Science.

[11]  T. Lahaye,et al.  Many-body physics with individually controlled Rydberg atoms , 2020, 2002.07413.

[12]  F. Verstraete,et al.  Simulating lattice gauge theories within quantum technologies , 2019, The European Physical Journal D.

[13]  Philippe Bouyer,et al.  Taking atom interferometric quantum sensors from the laboratory to real-world applications , 2019, Nature Reviews Physics.

[14]  N. Goldman,et al.  Floquet approach to ℤ2 lattice gauge theories with ultracold atoms in optical lattices , 2019, Nature Physics.

[15]  T. Speck,et al.  Highly controlled optical transport of cold atoms into a hollow-core fiber , 2018, New Journal of Physics.

[16]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[17]  V. Vuletić,et al.  Creation of a Bose-condensed gas of 87Rb by laser cooling , 2017, Science.

[18]  H. Nägerl,et al.  A new quantum gas apparatus for ultracold mixtures of K and Cs and KCs ground-state molecules , 2015, 1511.05044.

[19]  R. Reimann,et al.  Super-resolution microscopy of single atoms in optical lattices , 2015, 1512.07329.

[20]  Kohei Kato,et al.  An ytterbium quantum gas microscope with narrow-line laser cooling , 2015, 1509.03233.

[21]  Graham D. Bruce,et al.  Single-atom imaging of fermions in a quantum-gas microscope , 2015, Nature Physics.

[22]  T. Donner,et al.  Optical transport and manipulation of an ultracold atomic cloud using focus-tunable lenses , 2014, 1406.2336.

[23]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[24]  S. Falke,et al.  Long-range transport of ultracold atoms in a far-detuned one-dimensional optical lattice , 2012, 1204.3464.

[25]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[26]  A. L. Marchant,et al.  Guided transport of ultracold gases of rubidium up to a room-temperature dielectric surface , 2011, 1108.0316.

[27]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[28]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[29]  D. Greif,et al.  Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates , 2009, 0907.1323.

[30]  Optimal transport of ultracold atoms in the non-adiabatic regime , 2007, 0708.4197.

[31]  J. Hecker Denschlag,et al.  Long distance transport of ultracold atoms using a 1D optical lattice , 2006, cond-mat/0605736.

[32]  J. Danzl,et al.  Evidence for Efimov quantum states in an ultracold gas of caesium atoms , 2005, Nature.

[33]  T. Weber,et al.  Bose-Einstein Condensation of Cesium , 2002, Science.

[34]  V. Gomer,et al.  An optical conveyor belt for single neutral atoms , 2001, quant-ph/0107029.

[35]  M. Nieto,et al.  Coherent States and the Forced Quantum Oscillator , 1965 .