Synaptic depression as a timing device.

A depressing synapse transforms a time interval into a voltage amplitude. The effect of that transformation on the output of the neuron and network depends on the kinetics of synaptic depression and properties of the postsynaptic neuron and network. Using as examples neural circuits that incorporate depressing synapses, we show how short-term depression can contribute to a surprising variety of time-dependent computational and behavioral tasks.

[1]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[2]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[3]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[4]  Irving Kupfermann,et al.  Neuronal Correlates of Habituation and Dishabituation of the Gill-Withdrawal Reflex in Aplysia , 1970, Science.

[5]  Gary J. Rose,et al.  Frequency-Dependent PSP Depression Contributes to Low-Pass Temporal Filtering in Eigenmannia , 1999, The Journal of Neuroscience.

[6]  M. Castro-Alamancos,et al.  Role of Thalamocortical Sensory Suppression during Arousal: Focusing Sensory Inputs in Neocortex , 2002, The Journal of Neuroscience.

[7]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[8]  Michael J. O'Donovan,et al.  Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles , 1997, Trends in Neurosciences.

[9]  Farzan Nadim,et al.  Contribution of synaptic depression to phase maintenance in a model rhythmic network. , 2003, Journal of neurophysiology.

[10]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[11]  E. Fortune,et al.  Short-Term Synaptic Plasticity Contributes to the Temporal Filtering of Electrosensory Information , 2000, The Journal of Neuroscience.

[12]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[13]  E. Marder,et al.  Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks , 2001, Nature Neuroscience.

[14]  M. Castro-Alamancos Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo , 2002, The Journal of physiology.

[15]  E. Marder,et al.  Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Shimon Marom,et al.  Selective Adaptation in Networks of Cortical Neurons , 2003, The Journal of Neuroscience.

[17]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[18]  E. Fortune,et al.  Short-term synaptic plasticity as a temporal filter , 2001, Trends in Neurosciences.

[19]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[20]  A. Zador,et al.  Dynamic Synapses in the Cortex , 1997, Neuron.

[21]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[22]  E R Kandel,et al.  Neuronal Mechanisms of Habituation and Dishabituation of the Gill-Withdrawal Reflex in Aplysia , 1970, Science.

[23]  Farzan Nadim,et al.  Synaptic Depression Mediates Bistability in Neuronal Networks with Recurrent Inhibitory Connectivity , 2001, The Journal of Neuroscience.

[24]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[25]  H. Markram,et al.  t Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses , 2000, The Journal of Neuroscience.

[26]  E. Thomas,et al.  Computational model of the migrating motor complex of the small intestine. , 2004, American journal of physiology. Gastrointestinal and liver physiology.

[27]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[28]  Farzan Nadim,et al.  The role of short-term synaptic dynamics in motor control , 2000, Current Opinion in Neurobiology.

[29]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[30]  Peter Dallos,et al.  Neural coding in the chick cochlear nucleus , 1990, Journal of Comparative Physiology A.

[31]  R. Neve,et al.  Synaptic depression in the localization of sound , 2002 .

[32]  Michael J. O'Donovan,et al.  Modeling of Spontaneous Activity in Developing Spinal Cord Using Activity-Dependent Depression in an Excitatory Network , 2000, The Journal of Neuroscience.

[33]  Harunori Ohmori,et al.  Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo , 2002, The European journal of neuroscience.

[34]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[35]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D V Buonomano,et al.  Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity , 2000, The Journal of Neuroscience.

[37]  A. Reyes,et al.  In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.