FMO-based H.264 frame layer rate control for low bit rate video transmission

The use of flexible macroblock ordering (FMO) in H.264/AVC improves error resiliency at the expense of reduced coding efficiency with added overhead bits for slice headers and signalling. The trade-off is most severe at low bit rates, where header bits occupy a significant portion of the total bit budget. To better manage the rate and improve coding efficiency, we propose enhancements to the H.264/AVC frame layer rate control, which take into consideration the effects of using FMO for video transmission. In this article, we propose a new header bits model, an enhanced frame complexity measure, a bit allocation and a quantization parameter adjustment scheme. Simulation results show that the proposed improvements achieve better visual quality compared with the JM 9.2 frame layer rate control with FMO enabled using a different number of slice groups. Using FMO as an error resilient tool with better rate management is suitable in applications that have limited bandwidth and in error prone environments such as video transmission for mobile terminals.

[1]  Ahmet M. Kondoz,et al.  A rate control technique for off line H.264/AVC video coding using subjective quality of video , 2008, IEEE Transactions on Consumer Electronics.

[2]  Ruimin Hu,et al.  Adaptive FMO selection strategy for error resilient H.264 coding , 2008, 2008 International Conference on Audio, Language and Image Processing.

[3]  Do-Kyoung Kwon,et al.  Rate Control for H.264 Video With Enhanced Rate and Distortion Models , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Itu-T and Iso Iec Jtc Advanced video coding for generic audiovisual services , 2010 .

[5]  Yves Dhondt,et al.  Flexible Macroblock Ordering: an error resilience tool in H.264/AVC , 2004 .

[6]  Sung-Jea Ko,et al.  Bitrate Reduction Using FMO for Video Streaming over Packet Networks , 2009 .

[7]  Eric R. Ziegel,et al.  Probability and Statistics for Engineering and the Sciences (3rd ed.) , 2012 .

[8]  Supavadee Aramvith,et al.  Improved FMO based H.264 frame layer rate control for low bit rate video transmission , 2010, 28th Picture Coding Symposium.

[9]  King Ngi Ngan,et al.  Recent advances in rate control for video coding , 2007, Signal Process. Image Commun..

[10]  Zhengguo Li,et al.  A study of MPEG-4 rate control scheme and its improvements , 2003, IEEE Trans. Circuits Syst. Video Technol..

[11]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[12]  Baoxin Li,et al.  An enhanced rate control scheme with motion assisted slice grouping for low bit rate coding in H.264 , 2008, 2008 15th IEEE International Conference on Image Processing.

[13]  Yu Sun,et al.  New rate-distortion modeling and efficient rate control for H.264/AVC video coding , 2009, Signal Process. Image Commun..

[14]  Tihao Chiang,et al.  Scalable rate control for MPEG-4 video , 2000, IEEE Trans. Circuits Syst. Video Technol..

[15]  Zhenyu Wu,et al.  Optimal Frame Selection for H.264/AVC FMO Coding , 2006, 2006 International Conference on Image Processing.

[16]  Minqiang Jiang,et al.  Improved frame-layer rate control for H.264 using MAD ratio , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[17]  Minqiang Jiang,et al.  On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation , 2005, IEEE Trans. Consumer Electron..

[18]  Jungwoo Lee,et al.  Hierarchical video indexing and retrieval for subband-coded video , 2000, IEEE Trans. Circuits Syst. Video Technol..

[19]  Jaeseok Kim,et al.  Cost-Effective Frame-Layer H.264 Rate Control for Low Bit Rate Video , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[20]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .