A Visual Analytics Framework for Reviewing Streaming Performance Data

Understanding and tuning the performance of extreme-scale parallel computing systems demands a streaming approach due to the computational cost of applying offline algorithms to vast amounts of performance log data. Analyzing large streaming data is challenging because the rate of receiving data and limited time to comprehend data make it difficult for the analysts to sufficiently examine the data without missing important changes or patterns. To support streaming data analysis, we introduce a visual analytic framework comprising of three modules: data management, analysis, and interactive visualization. The data management module collects various computing and communication performance metrics from the monitored system using streaming data processing techniques and feeds the data to the other two modules. The analysis module automatically identifies important changes and patterns at the required latency. In particular, we introduce a set of online and progressive analysis methods for not only controlling the computational costs but also helping analysts better follow the critical aspects of the analysis results. Finally, the interactive visualization module provides the analysts with a coherent view of the changes and patterns in the continuously captured performance data. Through a multi-faceted case study on performance analysis of parallel discrete-event simulation, we demonstrate the effectiveness of our framework for identifying bottlenecks and locating outliers.

[1]  Robert B. Ross,et al.  Visual Analytics Techniques for Exploring the Design Space of Large-Scale High-Radix Networks , 2017, 2017 IEEE International Conference on Cluster Computing (CLUSTER).

[2]  Kwan-Liu Ma,et al.  A Visual Analytics System for Optimizing Communications in Massively Parallel Applications , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[3]  Martin Schulz,et al.  Visualizing Network Traffic to Understand the Performance of Massively Parallel Simulations , 2012, IEEE Transactions on Visualization and Computer Graphics.

[4]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[5]  Bernd Hamann,et al.  Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time , 2014, IEEE Transactions on Visualization and Computer Graphics.

[6]  William J. Dally,et al.  Technology-Driven, Highly-Scalable Dragonfly Topology , 2008, 2008 International Symposium on Computer Architecture.

[7]  Robert B. Ross,et al.  A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems , 2018, Vis. Informatics.

[8]  Lyndsey Franklin,et al.  Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization , 2017, Comput. Graph. Forum.

[9]  Andrey Balmin,et al.  Visualizing jobs with shared resources in distributed environments , 2013, 2013 First IEEE Working Conference on Software Visualization (VISSOFT).

[10]  Christopher D. Carothers,et al.  Scalable Time Warp on Blue Gene Supercomputers , 2009, 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation.

[11]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[12]  Robert B. Ross,et al.  Modeling a Million-Node Dragonfly Network Using Massively Parallel Discrete-Event Simulation , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[13]  Elmar Eisemann,et al.  Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.

[14]  Kwan-Liu Ma,et al.  Visual Analysis of Cloud Computing Performance Using Behavioral Lines , 2016, IEEE Transactions on Visualization and Computer Graphics.

[15]  Kwan-Liu Ma,et al.  A Visual Analytics Framework for Analyzing Parallel and Distributed Computing Applications , 2019, 2019 IEEE Visualization in Data Science (VDS).

[16]  Carsten Binnig,et al.  Progressive Data Science: Potential and Challenges , 2018, ArXiv.

[17]  Martin Schulz,et al.  Interpreting Performance Data across Intuitive Domains , 2011, 2011 International Conference on Parallel Processing.

[18]  Bernd Hamann,et al.  State of the Art of Performance Visualization , 2014, EuroVis.

[19]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[20]  Kwan-Liu Ma,et al.  An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[21]  Wei Chen,et al.  ViDX: Visual Diagnostics of Assembly Line Performance in Smart Factories , 2017, IEEE Transactions on Visualization and Computer Graphics.

[22]  Aidong Lu,et al.  Discovery of rating fraud with real-time streaming visual analytics , 2015, 2015 IEEE Symposium on Visualization for Cyber Security (VizSec).

[23]  Christopher D. Carothers,et al.  ROSS: a high-performance, low memory, modular time warp system , 2000, PADS '00.

[24]  Ken Martin,et al.  Time Dependent Processing in a Parallel Pipeline Architecture , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[26]  Klaus Mueller,et al.  A framework to visualize temporal behavioral relationships in streaming multivariate data , 2016, 2016 New York Scientific Data Summit (NYSDS).

[27]  Valerio Pascucci,et al.  Analyzing Network Health and Congestion in Dragonfly-Based Supercomputers , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[28]  Kwan-Liu Ma,et al.  In-situ processing and visualization for ultrascale simulations , 2007 .

[29]  Helwig Hauser,et al.  Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[30]  Larry D. Haugh,et al.  Causality in temporal systems: Characterization and a survey , 1977 .

[31]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[32]  Robert Sisneros,et al.  Coupling the Uintah Framework and the VisIt Toolkit for Parallel In Situ Data Analysis and Visualization and Computational Steering , 2018, ISC Workshops.

[33]  Daniel A. Keim,et al.  Visualization of streaming data: Observing change and context in information visualization techniques , 2013, 2013 IEEE International Conference on Big Data.

[34]  R. M. Fujimoto,et al.  Parallel discrete event simulation , 1989, WSC '89.

[35]  James P. Ahrens,et al.  The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman , 2017, ISAV@SC.

[36]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[37]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[38]  Xiangliang Zhang,et al.  A PCA-Based Change Detection Framework for Multidimensional Data Streams: Change Detection in Multidimensional Data Streams , 2015, KDD.

[39]  D. Sculley,et al.  Web-scale k-means clustering , 2010, WWW '10.

[40]  Niall M. Adams,et al.  Continuous monitoring for changepoints in data streams using adaptive estimation , 2017, Stat. Comput..

[41]  Charu C. Aggarwal,et al.  A Survey of Stream Clustering Algorithms , 2018, Data Clustering: Algorithms and Applications.