Negacyclic self-dual codes over finite chain rings
暂无分享,去创建一个
[1] Thomas Blackford,et al. Negacyclic Codes Over of Even Length , 2003 .
[2] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[3] H. Q. Dinh,et al. Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.
[4] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[5] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.
[6] B. R. McDonald. Finite Rings With Identity , 1974 .
[7] Graham H. Norton,et al. On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.
[8] Steven T. Dougherty,et al. Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..
[9] Elwyn R. Berlekamp. Negacyclic codes for the Lee metric , 1966 .
[10] Jon-Lark Kim,et al. MDS codes over finite principal ideal rings , 2009, Des. Codes Cryptogr..
[11] Dilip V. Sarwate,et al. Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.
[12] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[13] Sergio R. López-Permouth,et al. Cyclic Codes over the Integers Modulopm , 1997 .
[14] Steven T. Dougherty,et al. MDR codes over Zk , 2000, IEEE Trans. Inf. Theory.
[15] J. Wolfmann. Negacyclic and Cyclic Codes Over , 1999 .
[16] J. Wolfman. Negacyclic and cyclic codes over Z/sub 4/ , 1999 .
[17] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[18] S. Dougherty,et al. MDR Codes Over , 2000 .
[19] Shixin Zhu,et al. Negacyclic MDS codes over GR(2a,m) , 2009, 2009 IEEE International Symposium on Information Theory.
[20] Hai Q. Dinh,et al. Complete Distances of All Negacyclic Codes of Length Over , 2007 .
[21] Jacques Wolfmann,et al. Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.
[22] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[23] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[24] Shixin Zhu,et al. Dual and self-dual negacyclic codes of even length over Z2a , 2009, Discret. Math..
[25] Hongwei Liu,et al. Constructions of self-dual codes over finite commutative chain rings , 2010, Int. J. Inf. Coding Theory.
[26] Ana Salagean,et al. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..