Negacyclic self-dual codes over finite chain rings

In this article, we study negacyclic self-dual codes of length n over a finite chain ring R when the characteristic p of the residue field $${\bar{R}}$$ and the length n are relatively prime. We give necessary and sufficient conditions for the existence of (nontrivial) negacyclic self-dual codes over a finite chain ring. As an application, we construct negacyclic MDR self-dual codes over GR(pt, m) of length pm + 1.

[1]  Thomas Blackford,et al.  Negacyclic Codes Over of Even Length , 2003 .

[2]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[3]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[4]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[5]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[6]  B. R. McDonald Finite Rings With Identity , 1974 .

[7]  Graham H. Norton,et al.  On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.

[8]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[9]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[10]  Jon-Lark Kim,et al.  MDS codes over finite principal ideal rings , 2009, Des. Codes Cryptogr..

[11]  Dilip V. Sarwate,et al.  Pseudocyclic maximum- distance-separable codes , 1990, IEEE Trans. Inf. Theory.

[12]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[13]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[14]  Steven T. Dougherty,et al.  MDR codes over Zk , 2000, IEEE Trans. Inf. Theory.

[15]  J. Wolfmann Negacyclic and Cyclic Codes Over , 1999 .

[16]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[17]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[18]  S. Dougherty,et al.  MDR Codes Over , 2000 .

[19]  Shixin Zhu,et al.  Negacyclic MDS codes over GR(2a,m) , 2009, 2009 IEEE International Symposium on Information Theory.

[20]  Hai Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length Over , 2007 .

[21]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[22]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[23]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[24]  Shixin Zhu,et al.  Dual and self-dual negacyclic codes of even length over Z2a , 2009, Discret. Math..

[25]  Hongwei Liu,et al.  Constructions of self-dual codes over finite commutative chain rings , 2010, Int. J. Inf. Coding Theory.

[26]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..