Cathodoluminescence of high‐pressure feldspar minerals as a shock barometer

Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato‐790729. Under CL microscopy, bright blue emission was observed in Na‐lingunite in the shock veins. Dull blue‐emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na‐lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K‐lingunite and experimentally shock‐recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K‐lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock‐recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure‐induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar‐bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.

[1]  A. Yamaguchi,et al.  High‐pressure polymorphs in Yamato‐790729 L6 chondrite and their significance for collisional conditions , 2017 .

[2]  N. Tomioka,et al.  High‐pressure minerals in shocked meteorites , 2017 .

[3]  M. Herwegh,et al.  Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM‐CL) imaging , 2016 .

[4]  Motoo Ito,et al.  Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite , 2016, Science Advances.

[5]  C. Koeberl,et al.  Cathodoluminescence as a tool to discriminate impact melt, shocked and unshocked volcanics: A case study of samples from the El'gygytgyn impact structure , 2015 .

[6]  J. Götze,et al.  Cathodoluminescence of moldavites , 2015 .

[7]  T. Glotch,et al.  Maskelynite formation via solid‐state transformation: Evidence of infrared and X‐ray anisotropy , 2015 .

[8]  U. Kempe,et al.  Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals , 2013, Mineralogy and Petrology.

[9]  Naohisa Hirao,et al.  Discovery of seifertite in a shocked lunar meteorite , 2013, Nature Communications.

[10]  J. Götze Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences , 2012, Microscopy and Microanalysis.

[11]  A. Gucsik,et al.  Shock barometer using cathodoluminescence of alkali feldspar , 2012 .

[12]  M. Drury,et al.  Scanning electron microscope‐cathodoluminescence (SEM‐CL) imaging of planar deformation features and tectonic deformation lamellae in quartz , 2011 .

[13]  J. Fritz,et al.  Shock Pressure Calibration for Lunar Plagioclase , 2011 .

[14]  S. Nakano,et al.  Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution , 2010 .

[15]  T. Sekine,et al.  Shock Wave Chemical Synthesis , 2010 .

[16]  M. Nishijima,et al.  Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites , 2010 .

[17]  M. Stevens-Kalceff,et al.  Cathodoluminescence microcharacterization of point defects in α-quartz , 2009, Mineralogical Magazine.

[18]  A. Tsuchiyama,et al.  Cathodoluminescence and Raman Spectroscopic Characterization of Experimentally Shocked Plagioclase , 2009 .

[19]  Martin R. Lee,et al.  Identification of cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and electron-probe microanalysis , 2007 .

[20]  Xi Liu Phase relations in the system KAlSi3O8–NaAlSi3O8 at high pressure–high temperature conditions and their implication for the petrogenesis of lingunite , 2006 .

[21]  P. Decarli,et al.  High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration , 2006 .

[22]  B. Reynard,et al.  Silica as a shock index in shergottites: A cathodoluminescence study , 2005 .

[23]  J. Fritz,et al.  Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: Evidence of progressive shock metamorphism , 2005 .

[24]  T. Kondo,et al.  Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size , 2004 .

[25]  S. Saxena,et al.  Stability of KAlSi3O8 Hollandite‐type structure in the Earth's lower mantle conditions , 2001 .

[26]  D. Krinsley,et al.  Identification of shocked quartz by scanning cathodoluminescence imaging , 2001 .

[27]  N. Tomioka,et al.  Shock‐induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite , 2000 .

[28]  L. Dubrovinsky,et al.  Natural NaAlSi(3)O(8)-hollandite in the shocked sixiangkou meteorite , 2000, Science.

[29]  A. Yamaguchi,et al.  Monomineralic mobilization of plagioclase by shock: an experimental study , 2000 .

[30]  U. Kempe,et al.  Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil , 1999 .

[31]  A. Goresy,et al.  The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures , 1999 .

[32]  A. Finch,et al.  The causes and petrological significance of cathodoluminescence emissions from alkali feldspars , 1999 .

[33]  O. Shimomura,et al.  Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8 , 1994 .

[34]  A. Yagi,et al.  High pressure transitions in the system KAlSi3O8-NaAlSi3O8 , 1994 .

[35]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[36]  M. H. Anders,et al.  Evidence from cathodoluminescence for non-volcanic origin of shocked quartz at the Cretaceous/Tertiary boundary , 1988, Nature.

[37]  H. Wänke,et al.  Lunar meteorite Yamato-791197: Petrography, shock history and chemical composition , 1986 .

[38]  D. Stöffler,et al.  Shock metamorphism and petrography of the Shergotty achondrite , 1986 .

[39]  P. Lambert Reflectivity applied to peak pressure estimates in silicates of shocked rocks , 1981 .

[40]  Arnol'd Sergeevich Marfunin,et al.  Spectroscopy, Luminescence and Radiation Centers in Minerals , 1979 .

[41]  R. Sippel,et al.  Cathodoluminescence Properties of Lunar Rocks , 1970, Science.

[42]  A. E. Ringwood,et al.  High-pressure KAlSi3O8, an aluminosilicate with sixfold coordination , 1967 .

[43]  T. Kikegawa,et al.  Plagioclase breakdown as an indicator for shock conditions of meteorites , 2010 .

[44]  P. Beck,et al.  High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: Mechanisms of phase transformations and constraints to pressure and temperature histories , 2007 .

[45]  M. Krbetschek,et al.  High-Resolution Cathodoluminescence Studies of Feldspar Minerals , 2000 .

[46]  L. Dubrovinsky,et al.  Shock-induced high-pressure phase transition of labradorite to hollandite "(Na-47-Ca-51-K-2)" in Zagami and the assemblage hollandite "(Na-80-Ca-12-K-8)" plus jadeite in L chondrites: Constraints to peak shock pressures. , 2000 .

[47]  B. G. Yacobi,et al.  Cathodoluminescence Microscopy of Inorganic Solids , 1990, Springer US.

[48]  D. J. Marshall,et al.  Cathodoluminescence of geological materials , 1988 .