Strong illposedness of the incompressible Euler equation in integer Cm spaces
暂无分享,去创建一个
[1] L. Grafakos,et al. A remark on an endpoint Kato-Ponce inequality , 2013, Differential and Integral Equations.
[2] M. Vishik,et al. Hydrodynamics in Besov Spaces , 1998 .
[3] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze , 1925 .
[4] Hee Chul Pak,et al. Persistence of the incompressible Euler equations in a Besov space B1,1d+1(Rd) , 2013 .
[5] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[6] Peter Constantin,et al. On the Euler equations of incompressible fluids , 2007 .
[7] V. I. Yudovich,et al. Non-stationary flow of an ideal incompressible liquid , 1963 .
[8] Akira Ogawa,et al. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .
[9] R. Shvydkoy,et al. ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES , 2009, 0904.2196.
[10] Tosio Kato,et al. On nonstationary flows of viscous and ideal fluids in $L_{s}^{p}(\mathbb{R}^2)$ , 1987 .
[11] Edriss S. Titi,et al. Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations , 2009, 0906.2029.
[12] D. Chae,et al. Logarithmically regularized inviscid models in borderline sobolev spaces , 2012 .
[13] W. Wolibner. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .
[14] Jean Bourgain,et al. Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.
[15] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[16] Claude Bardos,et al. Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .
[17] V. I. Yudovich,et al. Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .
[18] Taoufik Hmidi,et al. On the global well-posedness for the axisymmetric Euler equations , 2008, 0801.2316.
[19] Leon Lichtenstein. ber einige Existenzprobleme der Hydrodynamik: Zweite Abhandlung Nichthomogene, unzusammendrckbare, reibungslose Flssigkeiten , 1927 .
[20] B. Khesin,et al. KAM theory and the 3D Euler equation , 2014, 1401.5516.
[21] P. Lemarié–Rieusset. Euler Equations and Real Harmonic Analysis , 2012 .
[22] Andrew J. Majda,et al. Vorticity and Incompressible Flow: Index , 2001 .
[23] Ryo Takada,et al. Counterexamples of Commutator Estimates in the Besov and the Triebel-Lizorkin Spaces Related to the Euler Equations , 2010, SIAM J. Math. Anal..
[24] Dongho Chae,et al. Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .
[25] Gustavo Ponce,et al. Well-Posedness of the Euler and Navier-Stokes Equations in the Lebesgue Spaces $L^p_s(\mathbb R^2)$ , 1986 .
[26] Young Ja Park,et al. Existence of Solution for the Euler Equations in a Critical Besov Space (ℝ n ) , 2004 .
[27] M. Vishik,et al. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type , 1999 .
[28] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamic , 1928 .
[29] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[30] G. Misiołek,et al. Ill-posedness of the incompressible Euler equations in the $C^1$ space , 2014, 1405.1943.
[31] Jean-Yves Chemin,et al. Perfect Incompressible Fluids , 1998 .
[32] Jean Bourgain,et al. On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.
[33] Haim Brezis,et al. Remarks on the Euler equation , 1974 .
[34] Р Даншен,et al. Аксиально-симметричные несжимаемые потоки с ограниченным вихрем@@@Axisymmetric incompressible flows with bounded vorticity , 2007 .
[35] T. Yanagisawa,et al. Note on global existence for axially symmetric solutions of the Euler system , 1994 .
[36] G. Misiołek,et al. ILL-POSEDNESS EXAMPLES FOR THE QUASI-GEOSTROPHIC AND THE EULER EQUATIONS , 2012 .
[37] Tosio Kato. Nonstationary flows of viscous and ideal fluids in R3 , 1972 .
[38] A. Majda,et al. Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .
[39] The determination of the inverse matrix for a basic reference equation for the theory of hydrodynamic stability , 1958 .
[40] Pierre-Louis Lions,et al. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .