Strong illposedness of the incompressible Euler equation in integer Cm spaces

We consider the d-dimensional incompressible Euler equations. We show strong illposedness of velocity in any Cm spaces whenever m ≥ 1 is an integer. More precisely, we show for a set of initial data dense in the Cm topology, the corresponding solutions lose Cm regularity instantaneously in time. In the C1 case, our proof is based on an anisotropic Lagrangian deformation and a short-time flow expansion. In the Cm, m ≥ 2 case, we introduce a flow decoupling method which allows to tame the nonlinear flow almost as a passive transport. The proofs also cover illposedness in Lipschitz spaces Cm−1,1 whenever m ≥ 1 is an integer.

[1]  L. Grafakos,et al.  A remark on an endpoint Kato-Ponce inequality , 2013, Differential and Integral Equations.

[2]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .

[3]  L. Lichtenstein Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze , 1925 .

[4]  Hee Chul Pak,et al.  Persistence of the incompressible Euler equations in a Besov space B1,1d+1(Rd) , 2013 .

[5]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[6]  Peter Constantin,et al.  On the Euler equations of incompressible fluids , 2007 .

[7]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[8]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[9]  R. Shvydkoy,et al.  ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES , 2009, 0904.2196.

[10]  Tosio Kato,et al.  On nonstationary flows of viscous and ideal fluids in $L_{s}^{p}(\mathbb{R}^2)$ , 1987 .

[11]  Edriss S. Titi,et al.  Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations , 2009, 0906.2029.

[12]  D. Chae,et al.  Logarithmically regularized inviscid models in borderline sobolev spaces , 2012 .

[13]  W. Wolibner Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .

[14]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[15]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[16]  Claude Bardos,et al.  Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .

[17]  V. I. Yudovich,et al.  Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .

[18]  Taoufik Hmidi,et al.  On the global well-posedness for the axisymmetric Euler equations , 2008, 0801.2316.

[19]  Leon Lichtenstein ber einige Existenzprobleme der Hydrodynamik: Zweite Abhandlung Nichthomogene, unzusammendrckbare, reibungslose Flssigkeiten , 1927 .

[20]  B. Khesin,et al.  KAM theory and the 3D Euler equation , 2014, 1401.5516.

[21]  P. Lemarié–Rieusset Euler Equations and Real Harmonic Analysis , 2012 .

[22]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[23]  Ryo Takada,et al.  Counterexamples of Commutator Estimates in the Besov and the Triebel-Lizorkin Spaces Related to the Euler Equations , 2010, SIAM J. Math. Anal..

[24]  Dongho Chae,et al.  Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .

[25]  Gustavo Ponce,et al.  Well-Posedness of the Euler and Navier-Stokes Equations in the Lebesgue Spaces $L^p_s(\mathbb R^2)$ , 1986 .

[26]  Young Ja Park,et al.  Existence of Solution for the Euler Equations in a Critical Besov Space (ℝ n ) , 2004 .

[27]  M. Vishik,et al.  Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type , 1999 .

[28]  L. Lichtenstein Über einige Existenzprobleme der Hydrodynamic , 1928 .

[29]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[30]  G. Misiołek,et al.  Ill-posedness of the incompressible Euler equations in the $C^1$ space , 2014, 1405.1943.

[31]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[32]  Jean Bourgain,et al.  On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.

[33]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[34]  Р Даншен,et al.  Аксиально-симметричные несжимаемые потоки с ограниченным вихрем@@@Axisymmetric incompressible flows with bounded vorticity , 2007 .

[35]  T. Yanagisawa,et al.  Note on global existence for axially symmetric solutions of the Euler system , 1994 .

[36]  G. Misiołek,et al.  ILL-POSEDNESS EXAMPLES FOR THE QUASI-GEOSTROPHIC AND THE EULER EQUATIONS , 2012 .

[37]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[38]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[39]  The determination of the inverse matrix for a basic reference equation for the theory of hydrodynamic stability , 1958 .

[40]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .