Algorithm FIRE—Feynman Integral REduction
暂无分享,去创建一个
[1] M. Steinhauser,et al. Fermionic contributions to the three-loop static potential , 2008, 0809.1927.
[2] A. Maier,et al. The second physical moment of the heavy quark vector correlator at O (α s 3 ) , 2008, 0806.3405.
[3] M. Steinhauser,et al. Applying Mellin-Barnes technique and Groebner bases to the three-loop static potential , 2008, 0805.1871.
[4] R. N. Lee. Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals , 2008, 0804.3008.
[5] A. Smirnov,et al. On the reduction of Feynman integrals to master integrals , 2007, 0707.3993.
[6] A. Smirnov,et al. Decoupling of heavy quarks in HQET , 2006, hep-ph/0609280.
[7] A. Smirnov,et al. S-bases as a tool to solve reduction problems for Feynman integrals , 2006, hep-ph/0606247.
[8] A. Smirnov. An algorithm to construct Gröbner bases for solving integration by parts relations , 2006, hep-ph/0602078.
[9] A. Smirnov,et al. Applying Gröbner bases to solve reduction problems for Feynman integrals , 2005, hep-lat/0509187.
[10] Vladimir P. Gerdt,et al. A Maple Package for Computing Groebner Bases for Linear Recurrence Relations , 2005, ArXiv.
[11] V. Smirnov. Evaluating Feynman Integrals , 2005 .
[12] V. Gerdt. Gröbner Bases in Perturbative Calculations , 2004 .
[13] C. Anastasiou,et al. Automatic integral reduction for higher order perturbative calculations , 2004, hep-ph/0404258.
[14] Platanenallee DESY Zeuthen,et al. Computation of Gröbner bases for two-loop propagator type integrals , 2004, hep-ph/0403253.
[15] M. Steinhauser,et al. Solving recurrence relations for multi-loop Feynman integrals , 2003, hep-ph/0307088.
[16] T. Gehrmann,et al. Two-loop master integrals for jets: the non-planar topologies , 2001, hep-ph/0101124.
[17] S. Laporta,et al. HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.
[18] T. Gehrmann,et al. Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000, hep-ph/0008287.
[19] P. Baikov. Criterion of irreducibility of multi-loop Feynman integrals , 1999, hep-ph/0507053.
[20] O. Tarasov. Reduction of Feynman graph amplitudes to a minimal set of basic integrals , 1998, hep-ph/9812250.
[21] P. Baikov. Explicit solutions of the multi-loop integral recurrence relations and its application , 1996 .
[22] P. Baikov. Explicit solutions of the 3-loop vacuum integral recurrence relations , 1996 .
[23] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[24] C. G. Bollini,et al. Dimensional renorinalization : The number of dimensions as a regularizing parameter , 1972, Il Nuovo Cimento B.
[25] G. Hooft,et al. Regularization and Renormalization of Gauge Fields , 1972 .
[26] B. Buchberger,et al. Gröbner bases and applications , 1998 .