Ultrafast carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure.

Ultrafast differential transmission spectroscopy is used to explore temperature-dependent carrier dynamics in an InAs/InGaAs quantum dots-in-a-well heterostructure. Electron-hole pairs are optically injected into the three dimensional GaAs barriers, after which we monitor carrier relaxation into the two dimensional InGaAs quantum wells and the zero dimensional InAs quantum dots by tuning the probe photon energy. We find that carrier capture and relaxation are dominated by Auger carrier-carrier scattering at low temperatures, with thermal emission playing an increasing role with temperature. Our experiments provide essential insight into carrier relaxation across multiple spatial dimensions.

[1]  Pallab Bhattacharya,et al.  Quantum-Dot Optoelectronic Devices , 2007, Proceedings of the IEEE.

[2]  John Houlihan,et al.  Electron and hole dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers , 2007 .

[3]  Hyunyong Choi,et al.  Ultrafast Electronic Dynamics in Unipolar n-Doped InGaAs–GaAs Self-Assembled Quantum Dots , 2007, IEEE Journal of Quantum Electronics.

[4]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[5]  Wei Zhang,et al.  High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature , 2007 .

[6]  R. Manning,et al.  Carrier capture dynamics of InAs∕GaAs quantum dots , 2007 .

[7]  Adriana Passaseo,et al.  Simultaneous filling of InAs quantum dot states from the GaAs barrier under nonresonant excitation , 2007 .

[8]  Yujie J. Ding,et al.  Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs∕GaAs quantum wells based on time-resolved pump and probe differential photoluminescence , 2006 .

[9]  G. Bastard,et al.  Unbound states in quantum heterostructures , 2006, Nanoscale Research Letters.

[10]  M. S. Skolnick,et al.  Exciton fine structure splitting in dot-in-a-well structures , 2006 .

[11]  R Richard Nötzel,et al.  Role of the continuum background for carrier relaxation in InAs quantum dots , 2005 .

[12]  Jörg Siegert,et al.  Carrier dynamics in modulation-doped InAs/GaAs quantum dots , 2005 .

[13]  Pallab Bhattacharya,et al.  Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots , 2005 .

[14]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[15]  Siddhartha Ghosh,et al.  QUANTUM DOT OPTO-ELECTRONIC DEVICES , 2004 .

[16]  M. Henini,et al.  Time-resolved photoluminescence of InAs quantum dots in a GaAs quantum well , 2004 .

[17]  P. Bhattacharya,et al.  Biexcitonic resonance in the nonlinear optical response of an InAs quantum dot ensemble , 2004 .

[18]  Robert S. Windeler,et al.  Coulomb and carrier-activation dynamics of resonantly excited InAs/GaAs quantum dots in two-color pump-probe experiments , 2003 .

[19]  Andreas Stintz,et al.  Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91 K , 2003 .

[20]  A. Vasanelli,et al.  Continuous absorption background and decoherence in quantum dots. , 2002, Physical Review Letters.

[21]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[22]  Jasprit Singh,et al.  Differential transmission measurement of phonon bottleneck in self-assembled quantum dot intersubband relaxation , 2002 .

[23]  Jasprit Singh,et al.  Temperature-dependent carrier dynamics in self-assembled InGaAs quantum dots , 2002 .

[24]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[25]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[26]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[27]  A. Stintz,et al.  Optical characteristics of 1.24-μm InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[28]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[29]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[30]  Jasprit Singh,et al.  Radiative and non-radiative inter-subband transition in self assembled quantum dots , 1998 .

[31]  Alexander V. Uskov,et al.  Auger carrier capture kinetics in self-assembled quantum dot structures , 1998 .

[32]  Jasprit Singh,et al.  Rapid carrier relaxation in In 0.4 Ga 0.6 A s / G a A s quantum dots characterized by differential transmission spectroscopy , 1998 .

[33]  Jasprit Singh,et al.  Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study , 1997 .

[34]  D. Mcbranch,et al.  Auger-process-induced charge separation in semiconductor nanocrystals , 1997 .

[35]  Albrecht,et al.  Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[36]  Egeler,et al.  Electron relaxation in quantum dots by means of Auger processes. , 1992, Physical review. B, Condensed matter.

[37]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[38]  K. Kreher Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures , 1997 .

[39]  M. Rosen,et al.  Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes , 1995 .