Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum

[1]  T. A. Krulwich,et al.  The Lysine 299 Residue Endows the Multisubunit Mrp1 Antiporter with Dominant Roles in Na+ Resistance and pH Homeostasis in Corynebacterium glutamicum , 2018, Applied and Environmental Microbiology.

[2]  A. McEwan,et al.  Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli , 2017, Proceedings of the National Academy of Sciences.

[3]  Jun Liu,et al.  Biotechnological advances and perspectives of gamma-aminobutyric acid production , 2017, World Journal of Microbiology and Biotechnology.

[4]  Yao Wang,et al.  Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis , 2017, Proceedings of the National Academy of Sciences.

[5]  Mario Rivera,et al.  Bacterioferritin: Structure, Dynamics, and Protein–Protein Interactions at Play in Iron Storage and Mobilization , 2017, Accounts of chemical research.

[6]  M. Kleerebezem,et al.  Stress Physiology of Lactic Acid Bacteria , 2016, Microbiology and Molecular Reviews.

[7]  Jinshui Lin,et al.  Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE. , 2016, The Journal of general and applied microbiology.

[8]  Yoon-Ah Na,et al.  The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. , 2016, Journal of microbiology and biotechnology.

[9]  Meiru Si,et al.  Mycothiol peroxidase MPx protects Corynebacterium glutamicum against acid stress by scavenging ROS , 2015, Biotechnology Letters.

[10]  P. Xu,et al.  Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. , 2015, Biotechnology advances.

[11]  J. Kalinowski,et al.  Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon. , 2014, Journal of biotechnology.

[12]  P. Lund,et al.  Coping with low pH: molecular strategies in neutralophilic bacteria. , 2014, FEMS microbiology reviews.

[13]  Chongde Wu,et al.  Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation , 2014, Journal of Industrial Microbiology & Biotechnology.

[14]  M. Arese,et al.  Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. , 2014, Biochimica et biophysica acta.

[15]  Mia Yang Ang,et al.  CoryneBase: Corynebacterium Genomic Resources and Analysis Tools at Your Fingertips , 2014, PloS one.

[16]  Walid A Houry,et al.  Mechanisms of acid resistance in Escherichia coli. , 2013, Annual review of microbiology.

[17]  M. Inui,et al.  OxyR acts as a transcriptional repressor of hydrogen peroxide‐inducible antioxidant genes in Corynebacterium glutamicum R , 2013, The FEBS journal.

[18]  P. Palumaa Copper chaperones. The concept of conformational control in the metabolism of copper , 2013, FEBS letters.

[19]  Bastian Blombach,et al.  Bio-based production of organic acids with Corynebacterium glutamicum , 2012, Microbial biotechnology.

[20]  Eung-Soo Kim,et al.  Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling , 2013, Biotechnology Letters.

[21]  Jian Chen,et al.  Lactobacillus casei combats acid stress by maintaining cell membrane functionality , 2012, Journal of Industrial Microbiology & Biotechnology.

[22]  M. Inui,et al.  Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. , 2011, Journal of microbiological methods.

[23]  George Sachs,et al.  Molecular aspects of bacterial pH sensing and homeostasis , 2011, Nature Reviews Microbiology.

[24]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[25]  R. Moezelaar,et al.  Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation. , 2010, Environmental microbiology.

[26]  E. Chiancone,et al.  Dps proteins prevent Fenton-mediated oxidative damage by trapping hydroxyl radicals within the protein shell. , 2010, Free radical biology & medicine.

[27]  J. Kalinowski,et al.  Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis , 2009, BMC Genomics.

[28]  J. Kalinowski,et al.  The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules , 2008, BMC Genomics.

[29]  L. M. Mateos,et al.  Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum , 2008, Antonie van Leeuwenhoek.

[30]  J. Marles-Wright,et al.  Stress responses of bacteria. , 2007, Current opinion in structural biology.

[31]  C. Georgopoulos,et al.  The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions , 2007, Molecular microbiology.

[32]  J. Hugenholtz,et al.  Glutathione Protects Lactococcus lactis against Acid Stress , 2007, Applied and Environmental Microbiology.

[33]  M. Drake,et al.  Stress Response of Escherichia coli , 2006 .

[34]  J. Kalinowski,et al.  The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum , 2006, BMC Genomics.

[35]  M. Bott,et al.  The AraC-type Regulator RipA Represses Aconitase and Other Iron Proteins from Corynebacterium under Iron Limitation and Is Itself Repressed by DtxR* , 2005, Journal of Biological Chemistry.

[36]  Thomas Rausch,et al.  Sulfur metabolism: a versatile platform for launching defence operations. , 2005, Trends in plant science.

[37]  G. Besra,et al.  Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. , 2005, Microbiology.

[38]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[39]  N Beales,et al.  Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. , 2004, Comprehensive reviews in food science and food safety.

[40]  G. Cecchini,et al.  Function and structure of complex II of the respiratory chain. , 2003, Annual review of biochemistry.

[41]  J. Kalinowski,et al.  The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. , 2003, Journal of biotechnology.

[42]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[43]  J. Imlay,et al.  High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction , 2003, Journal of bacteriology.

[44]  Hiroshi Kobayashi,et al.  Bacterial strategies to inhabit acidic environments. , 2000, The Journal of general and applied microbiology.

[45]  A. Burkovski,et al.  Construction and application of new Corynebacterium glutamicum vectors , 1999 .

[46]  Christopher E. Jones,et al.  Copper chaperones: function, structure and copper-binding properties , 1999, JBIC Journal of Biological Inorganic Chemistry.

[47]  Y. Kakinuma Inorganic Cation Transport and Energy Transduction in Enterococcus hirae and Other Streptococci , 1998, Microbiology and Molecular Biology Reviews.

[48]  C. Winterbourn Toxicity of iron and hydrogen peroxide: the Fenton reaction. , 1995, Toxicology letters.

[49]  H. Sahm,et al.  Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon , 1993, Journal of bacteriology.