Quantile Regression Analysis with Missing Response, with Applications to Inequality Measures and Data Combination

We propose a quantile regression method which eectively handles missing values due to non-response. We illustrate the usefulness of our method by two examples. First example is the estimation of income inequality measures when a signicant proportion of earnings are missing in survey data. Second example is when we need to combine more than two samples because no single data contains all the relevant variables. We propose a exible imputation method where missing values in response are drawn from the conditional quantile function of the response at given values of regressors. The rst- step quantile regression estimates the family of conditional quantile functions, from which missing values in the response are lled-in. Once data is completed by imputation, the second step-analysis is performed. We prove the consistency and the asymptotic normality of this two-step procedure and study its relative eciency compared to other possible methods.

[1]  Jana Jurečková,et al.  Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model , 1977 .

[2]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[3]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[4]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[5]  Christopher R. Bollinger,et al.  Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching , 2005, Journal of Labor Economics.

[6]  Philip E. Cheng,et al.  Nonparametric Estimation of Mean Functionals with Data Missing at Random , 1994 .

[7]  Christian Hansen,et al.  Instrumental quantile regression inference for structural and treatment effect models , 2006 .

[8]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[9]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .

[10]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[11]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[12]  Xiaohong Chen,et al.  Semiparametric efficiency in GMM models with auxiliary data , 2007, 0705.0069.

[13]  Finis Welch,et al.  What Do We Really Know about Wages? The Importance of Nonreporting and Census Imputation , 1986, Journal of Political Economy.

[14]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[15]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[16]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[17]  Alan T. K. Wan,et al.  Estimating Equations Inference With Missing Data , 2008 .

[18]  Xuming He,et al.  A Lack-of-Fit Test for Quantile Regression , 2003 .

[19]  R. Koenker,et al.  Regression Quantiles , 2007 .

[20]  Radhey S. Singh On the Glivenko-Cantelli Theorem for Weighted Empiricals Based on Independent Random Variables , 1975 .

[21]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[22]  R. Lalonde Evaluating the Econometric Evaluations of Training Programs with Experimental Data , 1984 .

[23]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[24]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[25]  Oliver Linton,et al.  Semiparametric Regression Analysis With Missing Response at Random , 2003 .

[26]  C. Chu,et al.  KERNEL ESTIMATION OF DISTRIBUTION FUNCTIONS AND QUANTILES WITH MISSING DATA , 1999 .

[27]  Roger Koenker,et al.  Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.

[28]  Alain Monfort,et al.  On the Problem of Missing Data in Linear Models , 1981 .

[29]  J. Heckman,et al.  Bias‐Corrected Estimates of GED Returns , 2006, Journal of Labor Economics.

[30]  G. Imbens Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review , 2004 .

[31]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[32]  G. Imbens,et al.  Large Sample Properties of Matching Estimators for Average Treatment Effects , 2004 .

[33]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[34]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[35]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[36]  Zhongjun Qu Testing for Structural Change in Regression Quantiles , 2007 .

[37]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[38]  Joel L. Horowitz,et al.  Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .

[39]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[40]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[41]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[42]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[43]  B. Hirsch,et al.  Match Bias in Wage Gap Estimates Due to Earnings Imputation , 2003, Journal of Labor Economics.

[44]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[45]  Marcel G. Dagenais,et al.  The use of incomplete observations in multiple regression analysis: A generalized least squares approach , 1973 .

[46]  J. Wooldridge Inverse probability weighted estimation for general missing data problems , 2004 .

[47]  So K Kb EFFICIENT SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR QUANTILE REGRESSION MODEL , 2003 .

[48]  Yan Yu,et al.  Single-index quantile regression , 2010, J. Multivar. Anal..

[49]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[50]  Gary Chamberlain,et al.  QUANTILE REGRESSION, CENSORING, AND THE STRUCTURE OF WAGES , 1991 .

[51]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator , 1998 .

[52]  R. Koenker Additive models for quantile regression: Model selection and confidence bandaids , 2010 .

[53]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[54]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .