Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts

The parametric global minimum cut problem concerns a graph \(G = (V, E)\) where the cost of each edge is an affine function of a parameter \(\mu \in \mathbb {R}^d\) for some fixed dimension d. We consider the problems of finding the next breakpoint in a given direction, and finding a parameter value with maximum minimum cut value. We develop strongly polynomial algorithms for these problems that are faster than a naive application of Megiddo’s parametric search technique. Our results indicate that the next breakpoint problem is easier than the max value problem.

[1]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[2]  N. Megiddo,et al.  Maximizing Concave Functions in Fixed Dimension , 1993 .

[3]  Toshihide Ibaraki,et al.  Computing All Small Cuts in an Undirected Network , 1997, SIAM J. Discret. Math..

[4]  Tomasz Radzik,et al.  Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .

[5]  Toshihide Ibaraki,et al.  Algorithmic Aspects of Graph Connectivity , 2008, Encyclopedia of Mathematics and its Applications.

[6]  Edith Cohen,et al.  Algorithms and complexity analysis for some flow problems , 1991, SODA '91.

[7]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..

[8]  David Fernández-Baca Multi-parameter Minimum Spanning Trees , 2000, LATIN.

[9]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Toshihide Ibaraki,et al.  Computing All Small Cuts in Undirected Networks , 1994, ISAAC.

[11]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[12]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[13]  M. Sharir,et al.  An Efficient Multi-Dimensional Searching Technique and itsApplications , 1993 .

[14]  Giovanni Rinaldi,et al.  Easy and difficult objective functions for max cut , 2003, Math. Program..

[15]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[16]  Takeshi Tokuyama Minimax parametric optimization problems and multi-dimensional parametric searching , 2001, STOC '01.

[17]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[18]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[19]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[20]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[21]  Ali Ridha Mahjoub,et al.  Strongly polynomial bounds for multiobjective and parametric global minimum cuts in graphs and hypergraphs , 2015, Mathematical Programming.

[22]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[23]  Hiroshi Nagamochi,et al.  Constructing a cactus for minimum cust og a graph in O(mn+n2log n) time and O(m) space , 2003 .

[24]  Balaji Venkatachalam,et al.  Sensitivity Analysis in Combinatorial Optimization , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[25]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[26]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[27]  David R. Karger,et al.  Enumerating parametric global minimum cuts by random interleaving , 2016, STOC.

[28]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[29]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[30]  David P. Williamson,et al.  On the Number of Small Cuts in a Graph , 1996, Inf. Process. Lett..

[31]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[32]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[33]  C SIAMJ. LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS , 1999 .

[34]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[35]  Leonidas J. Guibas,et al.  The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..