Planning Sustainable Economic Development in the Russian Arctic

Recent federal documents devoted to the Arctic zone economic development highlighted eight basic areas—future innovative centers of regional development. Totally 150 investment projects are planned by 2030, where 48% are designated for mineral resources extraction, 16%—for transport development, 7%—for geological survey, 2%—for environment safety protection etc. At the same time, these ambitious plans should meet green economy goals. This means that territorial planning will have to consider at least three spatially differentiated issues: Socio-economic, ecological and environmental (nature hazards, climatic changes etc.). Thus, the initial stage of territorial planning for economic development needs evaluation of different spatial combinations of these issues. This research presents an algorithm for evaluation of joint impact of basic regional components, characterizing “nature-population-economy” interrelations in order to reveal their spatial differences and demonstrate options and risks for future sustainable development of the Russian Arctic. Basic research methods included system analysis with GIS tools. Accumulated data were arranged in three blocks which included principle regional factors which control sustainable development. In order to find different patterns of sustainability provided by these factors pair assessments of ecological/economic, environmental/economic and ecological/environmental data was done. Independent variable-environmental factors offered different spatial natural patterns either promoting or hampering economic development. It was impossible to assess jointly all three blocks data because the discussed framework of regional sustainability factors attributed to spatial regional system, which demonstrated its panarchy character. Ranking results were visualized in a map where the selected pair groups were shown for each basic territory of advanced development. Visualization of proportional correlation of social, economic and ecological factors was achieved using color triangle method (RGB).