Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates

The role of Coulomb correlations in the iron pnictide LaFeAsO is studied by generalizing exact diagonalization dynamical mean field theory to five orbitals. For rotationally invariant Hund's rule coupling a continuous transition from a paramagnetic Fermi-liquid phase to a non-Fermi-liquid metallic phase exhibiting frozen moments is found at moderate Coulomb energies. For Ising-like exchange, this transition is first order and occurs at a lower critical Coulomb energy. The correlation-induced scattering rate as a function of doping relative to half-filling, i.e., delta = n/5-1, where n=6 for the undoped material, is shown to be qualitatively similar to the one in the two-dimensional single-band Hubbard model. In this scenario, the parent Mott insulator of LaFeAsO is the half-filled n=5 limit, while the undoped n=6 material corresponds to the critical doping region delta_c ~ 0.2 in the cuprates, on the verge between the Fermi-liquid phase of the overdoped region and the non-Fermi-liquid pseudogap phase in the underdoped region.

[1]  G. Kotliar,et al.  Cluster dynamical mean field theory of the Mott transition. , 2008, Physical review letters.

[2]  A. Hackl,et al.  Pressure-induced magnetic transition and volume collapse in FeAs superconductors: an orbital-selective Mott scenario , 2008, 0812.3394.

[3]  Correlated electrons in Fe-As compounds: a quantum chemical perspective. , 2009, Physical review letters.

[4]  Massimo Capone,et al.  Genesis of Coexisting Itinerant and Localized Electrons in Iron Pnictides , 2009, 1001.1098.

[5]  B. Ganapathy LaFeAsO as a Self Doped Spin-1 Mott Insulator: Quantum String Liquid State and Superconductivity , 2008 .

[6]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[7]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[8]  I. Eremin,et al.  Theory of magnetic excitations in iron-based layered superconductors , 2008, 0804.1793.

[9]  Caffarel,et al.  Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity. , 1994, Physical review letters.

[10]  R. Arita,et al.  Pnictogen height as a possible switch between high- T c nodeless and low- T c nodal pairings in the iron-based superconductors , 2009, 0904.2612.

[11]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[12]  Tao E. Li,et al.  Coexistence of itinerant electrons and local moments in iron-based superconductors , 2008, 0811.4111.

[13]  Jiansheng Wu,et al.  Theory of the magnetic moment in iron pnictides. , 2008, Physical review letters.

[14]  T. Maier,et al.  Phase diagram of the Hubbard model: Beyond the dynamical mean field , 2000, cond-mat/0011282.

[15]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[16]  Emanuel Gull,et al.  Momentum-selective metal-insulator transition in the two-dimensional Hubbard model: An 8-site dynamical cluster approximation study , 2009 .

[17]  V. Anisimov,et al.  Classification of the electronic correlation strength in the iron pnictides: The case of the parent compound BaFe 2 As 2 , 2009, 0906.3218.

[18]  Ryotaro Arita,et al.  Ab initio Derivation of Low-Energy Model for Iron-Based Superconductors LaFeAsO and LaFePO(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008, 0806.4750.

[19]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[20]  Q. Si Iron pnictide superconductors: Electrons on the verge , 2009, 0912.4989.

[21]  A. Georges,et al.  Bandwidth and Fermi surface of iron oxypnictides: Covalency and sensitivity to structural changes , 2008, 0806.3285.

[22]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[23]  A. Georges,et al.  d- and f-Orbital Correlations in the REFeAsO Compounds , 2008, 0808.2442.

[24]  Z. Hussain,et al.  Electronic structure of the iron-based superconductor LaOFeP , 2008, Nature.

[25]  A. P. Sorini,et al.  Evidence for weak electronic correlations in Fe-Pnictides , 2009, 0905.2633.

[26]  T. Yildirim Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.

[27]  A. Liebsch Single Mott transition in the multiorbital Hubbard model , 2004, cond-mat/0405410.

[28]  Hund’s coupling and the metal-insulator transition in the two-band Hubbard model , 2004, cond-mat/0411186.

[29]  E. Abrahams,et al.  Strong correlations and magnetic frustration in the high Tc iron pnictides. , 2008, Physical review letters.

[30]  G. Kotliar,et al.  Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling , 2008, 0805.0722.

[31]  C. Şen,et al.  Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study. , 2008, Physical review letters.

[32]  Philipp Werner,et al.  Krylov implementation of the hybridization expansion impurity solver and application to 5-orbital models , 2009, 0908.0681.

[33]  Haijun Zhang,et al.  Electron-hole asymmetry and quantum critical point in hole-doped BaFe2As2 , 2008, 0807.1401.

[34]  Liling Sun,et al.  Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs , 2008 .

[35]  N. Tong,et al.  Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional Hubbard model: Pseudogap, non-Fermi-liquid behavior, and particle-hole asymmetry , 2009 .

[36]  A. Georges,et al.  Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO , 2009, 0906.3735.

[37]  H. Ishida,et al.  Coulomb correlations do not fill the e′g hole pockets in Na0.3CoO2 , 2007, 0705.3627.

[38]  E. Dagotto,et al.  Three orbital model for the iron-based superconductors , 2009, 0910.1573.

[39]  E. Dagotto,et al.  Model for the magnetic order and pairing channels in Fe pnictide superconductors. , 2008, Physical review letters.

[40]  S. Haas,et al.  Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides , 2008, 0812.2894.

[41]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[42]  H. Ishida,et al.  Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory , 2008, 0810.4837.

[43]  T. Maier,et al.  Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides , 2008 .

[44]  L. Craco,et al.  Normal-state correlated electronic structure of iron pnictides from first principles , 2008, 0805.3636.

[45]  Chaoxing Liu,et al.  Minimal two-band model of the superconducting iron oxypnictides , 2008, 0804.1113.

[46]  M. Du,et al.  Density functional study of LaFeAsO(1-x)F(x): a low carrier density superconductor near itinerant magnetism. , 2008, Physical review letters.

[47]  V. Anisimov,et al.  Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  D. Basov,et al.  Electronic correlations in the iron pnictides , 2009, 0909.0312.

[49]  M. Troyer,et al.  Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. , 2008, Physical review letters.

[50]  G. Kotliar,et al.  Correlated electronic structure of LaO1-xFxFeAs. , 2008, Physical review letters.

[51]  E. Abrahams,et al.  Correlation effects in the iron pnictides , 2009, 0901.4112.

[52]  L. Craco,et al.  Electrodynamic response of incoherent metals : Normal phase of iron pnictides , 2009 .

[53]  Hai-Ping Cheng,et al.  Proximity of antiferromagnetism and superconductivity in LaFeAsO 1-x F x : Effective Hamiltonian from ab initio studies , 2008, 0803.3236.

[54]  R. Arita,et al.  Is Fermi-Surface Nesting the Origin of Superconductivity in Iron Pnictides?: A Fluctuation–Exchange-Approximation Study , 2009, 0909.1413.

[55]  David J. Singh,et al.  Problems with reconciling density functional theory calculations with experiment in ferropnictides , 2008 .