Labyrinthine Turing pattern formation in the cerebral cortex.

I propose that the labyrinthine patterns of the cortices of mammalian brains may be formed by a Turing instability of interacting axonal guidance species acting together with the mechanical strain imposed by the interconnecting axons.

[1]  S. R. Y. Cajal La rétine des vertébrés , 1892 .

[2]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[3]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[4]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[5]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[6]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[7]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[8]  V. Caviness,et al.  Mechanical model of brain convolutional development. , 1975, Science.

[9]  P. Alberch,et al.  The mechanical basis of morphogenesis. I. Epithelial folding and invagination. , 1981, Developmental biology.

[10]  J. Bard,et al.  A model for generating aspects of zebra and other mammalian coat patterns. , 1981, Journal of theoretical biology.

[11]  P. Todd A geometric model for the cortical folding pattern of simple folded brains. , 1982, Journal of theoretical biology.

[12]  George Oster,et al.  The mechanochemistry of cytogels , 1984 .

[13]  B. Goodwin,et al.  Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields , 1985 .

[14]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[15]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[16]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[17]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[18]  D. P. Jackson,et al.  Labyrinthine Pattern Formation in Magnetic Fluids , 1993, Science.

[19]  Mu-ming Poo,et al.  Turning of nerve growth cones induced by neurotransmitters , 1994, Nature.

[20]  Attractive axon guidance molecules. , 1994, Science.

[21]  Lewis D. Griffin The intrinsic geometry of the cerebral cortex. , 1994, Journal of theoretical biology.

[22]  H. Meinhardt,et al.  Biological pattern formation: fmm basic mechanisms ta complex structures , 1994 .

[23]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[24]  C. Truwit,et al.  Lissencephaly and other malformations of cortical development: 1995 update. , 1995, Neuropediatrics.

[25]  A. Münster,et al.  Turing-like spatial patterns in a polyacrylamide-methylene blue-sulfide-oxygen system , 1995 .

[26]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[27]  M. Nieto Molecular Biology of Axon Guidance , 1996, Neuron.

[28]  J. Murray,et al.  On a dynamic reaction–diffusion mechanism: the spatial patterning of teeth primordia in the alligator , 1996 .

[29]  Osipov,et al.  Scenarios of domain pattern formation in a reaction-diffusion system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Petrich,et al.  Interface proliferation and the growth of labyrinths in a reaction-diffusion system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  C. Goodman,et al.  The Molecular Biology of Axon Guidance , 1996, Science.

[32]  R. Raghavan,et al.  A CONTINUUM MECHANICS-BASED MODEL FOR CORTICAL GROWTH , 1997 .

[33]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[34]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[35]  J. Scannell Determining cortical landscapes , 1997, Nature.

[36]  Hans Meinhardt,et al.  Biological Pattern Formation as a Complex Dynamic Phenomenon , 1997 .

[37]  Julyan H. E. Cartwright,et al.  BURRIDGE-KNOPOFF MODELS AS ELASTIC EXCITABLE MEDIA , 1997 .

[38]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[39]  Stephen L. Judd,et al.  Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse , 1998, patt-sol/9807002.

[40]  H. Hentschel,et al.  Models of axon guidance and bundling during development , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  S. F. Witelson,et al.  The exceptional brain of Albert Einstein , 1999, The Lancet.

[42]  G. Goodhill,et al.  Theoretical analysis of gradient detection by growth cones. , 1999, Journal of neurobiology.

[43]  G. Gallo,et al.  Stabilization of Growing Retinal Axons by the Combined Signaling of Nitric Oxide and Brain-Derived Neurotrophic Factor , 2000, The Journal of Neuroscience.

[44]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.