Relativistic Milne-Eddington Type Solutions with a Variable Eddington Factor for Relativistic Spherical Winds

Relativistic radiative transfer in a relativistic spherical flow is examined in the fully special relativistic treatment. Under the assumption of a constant flow speed and using a variable (prescribed) Eddington factor, we analytically solve the relativistic moment equations in the comoving frame for several restricted cases, and obtain relativistic Milne-Eddington type solutions. In contrast to the plane-parallel case where the solutions exhibit the exponential behavior on the optical depth, the solutions have power-law forms. In the case of the radiative equilibrium, for example, the radiative flux has a power-law term multiplied by the exponential term. In the case of the local thermodynamic equilibrium with a uniform source function in the comoving frame, the radiative flux has a power-law form on the optical depth. This is because there is an expansion effect (curvature effect) in the spherical wind and the background density decreases as the radius increases.

[1]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[2]  秋月 千鶴 The structure of a slim disk outflow explored by three-dimensional radiation transfer , 2010 .

[3]  J. Fukue Milne–Eddington Solutions for Relativistic Spherical Flows , 2010 .

[4]  J. Fukue,et al.  Black-Hole Winds with a Variable Eddington Factor , 2009 .

[5]  J. Fukue Relativistic Variable Eddington Factor in a Relativistic Plane-Parallel Flow , 2009, 0904.3369.

[6]  J. Fukue Milne-Eddington Solutions for Relativistic Plane-Parallel Flows , 2009, 0904.2802.

[7]  M. Mori,et al.  Global Radiation-Magnetohydrodynamic Simulations of Black-Hole Accretion Flow and Outflow: Unified Model of Three States , 2009, 0903.5364.

[8]  J. Fukue Variable Eddington Factor in a Relativistic Plane-Parallel Flow , 2008, 0904.2804.

[9]  J. Fukue Relativistic Variable Eddington Factor , 2008, 0904.2803.

[10]  J. Fukue,et al.  Spherical relativistic radiation flows with variable Eddington factor , 2007, 0711.1388.

[11]  J. Fukue Radiative Transfer in Relativistic Accretion-Disk Winds , 2007, 0711.1387.

[12]  J. Fukue,et al.  Relativistic Radiation Hydrodynamical Accretion-Disk Winds , 2007, 0711.1386.

[13]  J. Fukue Radiative Transfer in Accretion-Disk Winds , 2007, 0711.0424.

[14]  J. Fukue Relativistic Radiative Flow in a Luminous Disk , 2006, astro-ph/0602253.

[15]  J. Fukue,et al.  Relativistic Radiative Flow in a Luminous Disk II , 2005, 0711.0423.

[16]  K. Ohsuga Two-dimensional Radiation-Hydrodynamic Model for Limit-Cycle Oscillations of Luminous Accretion Disks , 2005, astro-ph/0512178.

[17]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[18]  E. Toscano,et al.  Black hole accretion discs and jets at super-Eddington luminosity , 2004, astro-ph/0411743.

[19]  T. Okuda Super-Eddington Black-Hole Models for SS 433 , 2002, astro-ph/0202446.

[20]  A. Peraiah,et al.  An Introduction to Radiative Transfer: Methods and Applications in Astrophysics , 2001 .

[21]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[22]  Dimitri Mihalas,et al.  On laboratory-frame radiation hydrodynamics , 2001 .

[23]  M. Fujita,et al.  Super-Eddington Accretion-Disk Models for SS 433 , 2000 .

[24]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[25]  D. Lin,et al.  Evolution of FU Orionis Outbursts in Protostellar Disks , 1999 .

[26]  S. Mineshige,et al.  Black-Hole Accretion Disks , 1999 .

[27]  S. Sakashita,et al.  Two-Dimensional Accretion Disk Models : Inner Accretion Disks of FU Orionis Objects , 1997 .

[28]  R. Turolla,et al.  WINDS FROM NEUTRON STARS AND STRONG TYPE I X-RAY BURSTS , 1994, astro-ph/9405065.

[29]  B. Paczyński Super-Eddington winds from neutron stars , 1990 .

[30]  Myeong-Gu Park Self-consistent models of spherical accretion onto black holes , 1990 .

[31]  J. Katz,et al.  Radiation hydrodynamic calculation of super-Eddington accretion disks , 1987 .

[32]  R. Turolla,et al.  On Hydrodynamics of Radiatively Driven Winds , 1986 .

[33]  B. Paczyński,et al.  Models of radiation-driven winds from general relativistic neutron stars , 1986 .

[34]  J. Katz,et al.  Jet production in super-Eddington accretion disks , 1985 .

[35]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[36]  J. Smyth,et al.  Progress in Clinical and Biological Research , 1979 .

[37]  Dimitri Mihalas,et al.  On the use of variable Eddington factors in non-LTE stellar atmospheres computations , 1970 .

[38]  S. Chandrasekhar The Radiative Equilibrium of Extended Stellar Atmospheres , 1934 .

[39]  N. A. Kosirev Radiative Equilibrium of the Extended Photosphere , 1934 .

[40]  E. A. Milne Radiative equilibrium in the outer layers of a star , 1921 .

[41]  A. Schuster Radiation through a foggy atmosphere , 1903 .

[42]  W. Marsden I and J , 2012 .

[43]  加藤 正二,et al.  Black-hole accretion disks : towards a new paradigm , 2008 .

[44]  Jun Velocity-Dependent Eddington Factor in Relativistic Radiative Flow , 2006 .

[45]  John I. Castor,et al.  Radiation Hydrodynamics: Spectral line transport , 2004 .

[46]  H. Janka,et al.  Approximate radiative transfer by two-moment closure - when is it possible? , 1992 .

[47]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[48]  W. Kley Radiation hydrodynamics of the boundary layer in accretion disks. I - Numerical methods , 1989 .

[49]  Zhang Xr,et al.  Effects of timing acupuncture on nuclear volume of neurosecretory cells in rat supraoptic nucleus. , 1987 .

[50]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[51]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[52]  G. Bath Optically thick winds in classical novae , 1978 .

[53]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[54]  James Jeans,et al.  The stability of a spherical Nebula , 1901, Proceedings of the Royal Society of London.

[55]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.