Platinum induced crosslinking of polycarbosilanes for the formation of highly porous CeO2/silicon oxycarbide catalysts

A new synthesis scheme for the formation of porous CeO2/Pt-polycarbosilane composites using inverse microemulsions is presented. Aqueous hexachloroplatinic acid was used as a hydrosilylation catalyst causing crosslinking of allyl groups in a liquid polycarbosilane (PCS). The resulting polymers are temperature stable and highly porous. The Pt catalyst content and post-treatment of the polymer can be used to adjust the porosity. For the first time hydrophobic polymers with specific surface areas up to 896 m2/g were obtained by catalytic crosslinking of polycarbosilanes. Ceria nanoparticles 2–3 nm in diameter are well dispersed in the PCS matrix as proven using high resolution electron microscopy. Porosity of the hydrophobic materials could be increased up to 992 m2/g by adding divinylbenzene in the oil phase. Pyrolyses at 1200–1500 °C and post-oxidative treatment at various temperatures produce porous ceramic structures with surface areas up to 423 m2/g. X-Ray diffration investigations show that the crystallinity of the SiC matrix can be controlled by the pyrolysis temperature. Post-oxidative treatments cause silicon oxycarbide formation. Structure and morphology of the polymeric and ceramic composites were investigated using 29Si MAS NMR, FESEM, FT-IR and EDX techniques. The temperature programmed oxidation (TPO) of methane shows a high catalytic activity of CeO2/Pt-SiC(O) composites lowering the onset in the TPO to 400–500 °C.

[1]  Ferdi Schüth,et al.  Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials , 2009 .

[2]  S. Kaskel,et al.  Tubular and Rodlike Ordered Mesoporous Silicon (Oxy)carbide Ceramics and their Structural Transformations , 2008 .

[3]  S. Kaskel,et al.  Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles , 2008 .

[4]  C. Feldmann,et al.  Microemulsion Approach to Non‐Agglomerated and Crystalline Nanomaterials , 2008 .

[5]  M. Bäumer,et al.  Synthesis and Properties of Porous Hybrid Materials containing Metallic Nanoparticles , 2008 .

[6]  A. Harris,et al.  Heterogeneously catalysed crosslinking of polycarbosilane with divinylbenzene , 2008 .

[7]  S. Kaskel,et al.  Preparation of photochromic transparent BiOX (X = Cl, I)/PLA nanocomposite materials via microemulsion polymerization , 2007 .

[8]  D. Zhao,et al.  Ordered Mesoporous SiOC and SiCN Ceramics from Atmosphere-Assisted in Situ Transformation , 2007 .

[9]  Stefan Kaskel,et al.  Nanosized BiOX (X = Cl, Br, I) particles synthesized in reverse microemulsions , 2007 .

[10]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[11]  S. Kaskel,et al.  Thermal stability of high surface area silicon carbide materials , 2006 .

[12]  P. Simon,et al.  Platinum-Catalyzed Template Removal for the in Situ Synthesis of MCM-41 Supported Catalysts , 2006 .

[13]  E. Aneggi,et al.  Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2 , 2006 .

[14]  Yangyang Shi,et al.  Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability , 2006 .

[15]  P. Simon,et al.  Synthesis and characterization of transparent luminescent ZnS: Mn/PMMA nanocomposites , 2006 .

[16]  A. Lu,et al.  High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process , 2005 .

[17]  Paul J. A. Kenis,et al.  Tailored Macroporous SiCN and SiC Structures for High‐Temperature Fuel Reforming , 2005 .

[18]  R. Palkovits,et al.  Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[19]  M. Drofenik,et al.  SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES , 2005 .

[20]  V. Pol,et al.  Novel Synthesis of High Surface Area Silicon Carbide by RAPET (Reactions under Autogenic Pressure at Elevated Temperature) of Organosilanes , 2005 .

[21]  M. Modesti,et al.  Silicon Oxycarbide Ceramic Foams from a Preceramic Polymer , 2004 .

[22]  J. Eastoe,et al.  Microemulsion-based synthesis of CeO(2) powders with high surface area and high-temperature stabilities. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  S. Kaskel,et al.  SiC/MCM-48 and SiC/SBA-15 Nanocomposite Materials , 2004 .

[24]  M. Antonietti,et al.  Synthesis and characterization of stable and crystalline Ce1-xZrxO2 nanoparticle sols , 2004 .

[25]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[26]  F. Schüth Endo- and exotemplating to create high-surface-area inorganic materials. , 2003, Angewandte Chemie.

[27]  O. P. Yadav,et al.  Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide , 2003 .

[28]  G. Xu,et al.  Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion , 2003 .

[29]  H. Althues,et al.  Sulfated Zirconia Nanoparticles Synthesized in Reverse Microemulsions: Preparation and Catalytic Properties , 2002 .

[30]  W. Stark,et al.  Flame-made ceria nanoparticles , 2002 .

[31]  C. Pham‐Huu,et al.  Silicon Carbide: A Novel Catalyst Support for Heterogeneous Catalysis , 2001 .

[32]  M. Flytzani-Stephanopoulos,et al.  Nanostructured Au–CeO2 Catalysts for Low-Temperature Water–Gas Shift , 2001 .

[33]  E. Foos,et al.  Synthesis and Characterization of Nanocrystalline Bismuth Telluride , 2001 .

[34]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[35]  M. Fernández-García,et al.  Structural Characteristics and Redox Behavior of CeO2-ZrO2/Al2O3 Supports , 2000 .

[36]  N. Guilhaume,et al.  Combustion of methane on CeO2–ZrO2 based catalysts , 2000 .

[37]  R. Riedel,et al.  Silazane derived ceramics and related materials , 2000 .

[38]  M. Möller,et al.  Hyperbranched polyalkenylsilanes by hydrosilylation with platinum catalysts. I. Polymerization , 2000 .

[39]  Jackie Y. Ying,et al.  Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion , 2000, Nature.

[40]  C. Querini,et al.  Catalytic combustion of diesel soot on Co, K supported catalysts , 1999 .

[41]  M. Fernández-García,et al.  Characterization of High Surface Area Zr−Ce (1:1) Mixed Oxide Prepared by a Microemulsion Method , 1999 .

[42]  Carlo G. Pantano,et al.  Silicon Oxycarbide Glasses , 1999 .

[43]  R. Hempelmann,et al.  Size-controlled synthesis of nanocrystalline BaTiO_3 by a sol-gel type hydrolysis in microemulsion-provided nanoreactors , 1998 .

[44]  Raymond J. Gorte,et al.  Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties , 1998 .

[45]  G. Adachi,et al.  Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles , 1997 .

[46]  Martin Sternitzke,et al.  Structural ceramic nanocomposites , 1997 .

[47]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[48]  Young‐Wook Kim,et al.  Fabrication of silicon carbide nanoceramics , 1996 .

[49]  K. Handique,et al.  Ultrafine Metal Particle Formation in Reverse Micellar Systems: Effects of Intermicellar Exchange on the Formation of Particles , 1996 .

[50]  M. Herrmann,et al.  Porous CeOX/SiC Nanocomposites Prepared from Reverse Polycarbosilane-Based Microemulsions , 2008 .

[51]  R. Hempelmann,et al.  Microemulsion mediated synthesis of ternary and quaternary nanoscale mixed oxide ceramic powders , 1997 .

[52]  C. Djerassi,et al.  Hydrothermal Preparation of some Rare Earth Trihydroxides and Rare Earth Oxide Hydroxides. , 1966 .