Recycled Poly(vinyl alcohol) Sponge for Carbon Encapsulation of Size-Tunable Tin Dioxide Nanocrystalline Composites.

The recycling of industrial materials could reduce their environmental impact and waste haulage fees and result in sustainable manufacturing. In this work, commercial poly(vinyl alcohol) (PVA) sponges are recycled into a macroporous carbon matrix to encapsulate size-tunable SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) through a scalable, flash-combustion method. The hydroxyl groups present copiously in the recycled PVA sponges guarantee a uniform chemical coupling with a tin(IV) citrate complex through intermolecular hydrogen bonds. Then, a scalable, ultrafast combustion process (30 s) carbonizes the PVA sponge into a 3D carbon matrix. This PVA-sponge-derived carbon could not only buffer the volume fluctuations upon the Li-Sn alloying and dealloying processes but also afford a mixed conductive network, that is, a continuous carbon framework for electrical transport and macropores for facile electrolyte percolation. The best-performing electrode based on this composite delivers a rate performance up to 9.72 C (4 A g(-1) ) and long-term cyclability (500 cycles) for Li(+) ion storage. Moreover, cyclic voltammograms demonstrate the coexistence of alloying and dealloying processes and non-diffusion-controlled pseudocapacitive behavior, which collectively contribute to the high-rate Li(+) ion storage.

[1]  Yue Ma,et al.  N-doped carbon encapsulation of ultrafine silicon nanocrystallites for high performance lithium ion storage , 2013 .

[2]  Xingcheng Xiao,et al.  Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries , 2013 .

[3]  M. Armand,et al.  Building better batteries , 2008, Nature.

[4]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[5]  Yue Ma,et al.  Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction , 2012 .

[6]  S. Hirano,et al.  Encapsulation of SnO2/Sn Nanoparticles into Mesoporous Carbon Nanowires and its Excellent Lithium Storage Properties , 2015 .

[7]  J. Maier Thermodynamik der elektrochemischen Lithiumspeicherung , 2013 .

[8]  Ruigang Zhang,et al.  Tin-Iron Based Nano-Materials as Anodes for Li-Ion Batteries , 2011 .

[9]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[10]  L. Monconduit,et al.  Confined Ultrasmall SnO2 Particles in Micro/Mesoporous Carbon as an Extremely Long Cycle‐Life Anode Material for Li‐Ion Batteries , 2014 .

[11]  R. Kostecki,et al.  Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries , 2007 .

[12]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[13]  Lidong Li,et al.  One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. , 2012, ACS applied materials & interfaces.

[14]  Bruno Scrosati,et al.  Nanomaterialien für wiederaufladbare Lithiumbatterien , 2008 .

[15]  Shinobu Fujihara,et al.  Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  Yusheng Yang,et al.  Nano-Sn/Mesoporous Carbon Parasitic Composite as Advanced Anode Material for Lithium-Ion Battery , 2012 .

[17]  A. V. Churikov,et al.  Electrochemical behaviour of LiSn, LiCd and LiSnCd alloys in propylene carbonate solution , 1996 .

[18]  Yue Ma,et al.  Fe‐Doped MnxOy with Hierarchical Porosity as a High‐Performance Lithium‐ion Battery Anode , 2013, Advanced materials.

[19]  C. Shi,et al.  Graphene networks anchored with sn@graphene as lithium ion battery anode. , 2014, ACS nano.

[20]  Joachim Maier,et al.  Thermodynamics of electrochemical lithium storage. , 2013, Angewandte Chemie.

[21]  Minghao Wu,et al.  Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries , 2013 .

[22]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[23]  Sang-Hoon Park,et al.  In Situ Synthesis of Three-Dimensional Self-Assembled Metal Oxide–Reduced Graphene Oxide Architecture , 2014 .

[24]  A. Manthiram,et al.  SnSb?TiC?C nanocomposite alloy anodes for lithium-ion batteries , 2015 .

[25]  J. Tarascon,et al.  Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode , 2010 .

[26]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[27]  Biao Wang,et al.  Preparation and electrochemical properties of profiled carbon fiber-supported Sn anodes for lithium-ion batteries , 2015 .

[28]  Y. Ding,et al.  A nanocomposite of SnO(2) and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries , 2011 .

[29]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[30]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[31]  Yue Ma,et al.  Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithium ion storage , 2011 .

[32]  Yue Ma,et al.  Facile solvothermal synthesis of anatase TiO2 microspheres with adjustable mesoporosity for the reversible storage of lithium ions , 2012 .

[33]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[34]  Electrochemical behavior of nanocrystalline tin oxide electrodeposited on a Cu substrate for Li-ion batteries , 2004 .

[35]  O. Schmidt,et al.  Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage , 2014, Scientific Reports.

[36]  Shenglin Jiang,et al.  Simple synthesis of metallic Sn nanocrystals embedded in graphitic ordered mesoporous carbon walls as superior anode materials for lithium ion batteries , 2012 .

[37]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[38]  A. Manthiram,et al.  Superior Capacity Retention Sn–Ni–Fe–C Composite Anodes for Lithium-Ion Batteries , 2009 .

[39]  H. Akbulut,et al.  Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries , 2014 .

[40]  D. Deng,et al.  Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage , 2008 .

[41]  C. Gervasi,et al.  Evidences of the formation of a tin(IV) complex in citric–citrate buffer solution: A study based on voltammetric, FTIR and ab initio calculations , 2012 .

[42]  P. Balaya,et al.  6Li MAS NMR Investigation of Electrochemical Lithiation of RuO2: Evidence for an Interfacial Storage Mechanism , 2009 .

[43]  Xiaojing Yang,et al.  Graphene‐Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium‐Ion Batteries , 2013 .

[44]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[45]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[46]  X. Lou,et al.  SnO₂-based nanomaterials: synthesis and application in lithium-ion batteries. , 2013, Small.

[47]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[48]  Yong Wang,et al.  Confined Volume Change in Sn‐Co‐C Ternary Tube‐in‐Tube Composites for High‐Capacity and Long‐Life Lithium Storage , 2013 .

[49]  Wen‐Cui Li,et al.  Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume , 2012 .

[50]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.