Analysis of cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing

Cell membrane permeabilization mechanics and the resulting shape of nanopores in response to electrical pulsing are probed based on a continuum approach. This has implications for electropermeabilization and cell membrane transport. It is argued that small pores resulting from high-intensity (~100 kV/cm), nanosecond pulsing would have an initial asymmetric shape. This would lead to asymmetric membrane current–voltage characteristics, at least at early times. The role of the cytoskeleton is ignored here, but can be expected to additionally contribute to such asymmetries. Furthermore, we show that the pore shape and membrane conduction would be dynamic, and evolve toward a symmetric characteristic over time. This duration has been shown to be in the micro-second range.

[1]  K. Schoenbach,et al.  Nanosecond, high‐intensity pulsed electric fields induce apoptosis in human cells , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Damijan Miklavčič,et al.  Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy , 1995 .

[3]  E Neumann,et al.  Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. , 1994, Biophysical journal.

[4]  Juergen F. Kolb,et al.  Nanosecond pulsed electric fields cause melanomas to self-destruct , 2006 .

[5]  P. Park,et al.  Dynamics of pore growth in membranes and membrane stability. , 1997, Biophysical journal.

[6]  Damijan Miklavcic,et al.  The effect of electroporation pulses on functioning of the heart , 2008, Medical & Biological Engineering & Computing.

[7]  A. Baumgaertner,et al.  Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. , 2000, Biophysical journal.

[8]  R. Thompson,et al.  Water Confined in Cylindrical Micropores , 2002 .

[9]  Salvatore Torquato,et al.  Thermodynamic implications of confinement for a waterlike fluid , 2001 .

[10]  Raphael C. Lee,et al.  Electrical Injury Mechanisms: Dynamics of the Thermal Response , 1987, Plastic and reconstructive surgery.

[11]  Ravindra P. Joshi,et al.  Simulation Studies of Ultrashort, High-Intensity Electric Pulse Induced Action Potential Block in Whole-Animal Nerves , 2008, IEEE Transactions on Biomedical Engineering.

[12]  D. Levitt,et al.  Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. , 1978, Biophysical journal.

[13]  G. Salido,et al.  Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. , 2002, Cellular signalling.

[14]  K. Schoenbach,et al.  Aspects of lipid membrane bio-responses to subnanosecond, ultrahigh voltage pulsing , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[15]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[16]  Bennett L Ibey,et al.  Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. , 2009, Biochemical and biophysical research communications.

[17]  Teissié,et al.  Electropermeabilization of cell membranes. , 1999, Advanced drug delivery reviews.

[18]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[19]  Evan Evans,et al.  Dynamic tension spectroscopy and strength of biomembranes. , 2003, Biophysical journal.

[20]  W. Krassowska,et al.  Modeling postshock evolution of large electropores. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  E. Neumann,et al.  Electroporation and Electrofusion in Cell Biology , 1989, Springer US.

[22]  C. Santangelo,et al.  Pore formation in fluctuating membranes. , 2004, The Journal of chemical physics.

[23]  Sung,et al.  Polymer Translocation through a Pore in a Membrane. , 1996, Physical review letters.

[24]  K. Schoenbach,et al.  Intracellular effect of ultrashort electrical pulses , 2001, Bioelectromagnetics.

[25]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[26]  Ravindra P. Joshi,et al.  Neuromuscular disruption with ultrashort electrical pulses , 2006, SPIE Defense + Commercial Sensing.

[27]  K. Schoenbach,et al.  Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. , 2004, Physiological measurement.

[28]  E Neumann,et al.  Fundamentals of electroporative delivery of drugs and genes. , 1999, Bioelectrochemistry and bioenergetics.

[29]  Shu Xiao,et al.  Bioelectric Effects of Intense Nanosecond Pulses , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[30]  K. Schoenbach,et al.  Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. R. Tarasevich,et al.  246 - Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion , 1979 .

[32]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[33]  James C. Weaver,et al.  Decreased bilayer stability due to transmembrane potentials , 1981 .

[34]  V. F. Pastushenko,et al.  Electric breakdown of bilayer lipid membranes , 1979 .

[35]  O. Farago “Water-free” computer model for fluid bilayer membranes , 2003, cond-mat/0304203.

[36]  M. Rols,et al.  Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. , 1992, Biochimica et biophysica acta.

[37]  Mihaly Mezei,et al.  Grand Canonical Monte Carlo Simulation of Water Positions in Crystal Hydrates , 1994 .

[38]  J. Weaver Molecular basis for cell membrane electroporation. , 1994, Annals of the New York Academy of Sciences.

[39]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[40]  Oliver Beckstein,et al.  The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores , 2004, Physical biology.

[41]  W. Krassowska,et al.  Electrical energy required to form large conducting pores. , 2003, Bioelectrochemistry.

[42]  Juergen F Kolb,et al.  Membrane permeabilization and cell damage by ultrashort electric field shocks. , 2007, Archives of biochemistry and biophysics.

[43]  M. Toda,et al.  In: Statistical physics II , 1985 .

[44]  Tina Batista Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells , 2010 .

[45]  J. Weaver,et al.  Theory of electroporation: A review , 1996 .

[46]  T. Heimburg,et al.  Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane-water interfaces. , 2001, Biophysical journal.

[47]  Assaf Zemel,et al.  Energetics and self-assembly of amphipathic peptide pores in lipid membranes. , 2003, Biophysical journal.

[48]  Jeffrey C. Hall,et al.  Advances in Genetics , 1947 .

[49]  J. Litster,et al.  Stability of lipid bilayers and red blood cell membranes , 1975 .

[50]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[51]  L. Chernomordik,et al.  Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. , 2001, Biophysical journal.

[52]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[53]  Véronique Préat,et al.  Transdermal delivery of timolol by electroporation through human skin. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[54]  R. Benz,et al.  Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes. , 1993, Biophysical journal.

[55]  Ravindra P. Joshi,et al.  Ultrashort electrical pulses open a new gateway into biological cells , 2004 .

[56]  L. Chernomordik,et al.  Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. , 1988, Biochimica et biophysica acta.

[57]  W. Krassowska,et al.  Singular perturbation analysis of the pore creation transient. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  D. Boal Mechanics of the Cell: Membranes , 2012 .

[59]  W. Helfrich The size of bilayer vesicles generated by sonication , 1974 .

[60]  Winterhalter,et al.  Effect of voltage on pores in membranes. , 1987, Physical review. A, General physics.

[61]  R. Guidelli Planar Lipid Bilayers (BLMs) and Their Applications: H.T. Tien, A. Ottova-Leitmannova (Eds.), Elsevier, Amsterdam, 2003 , 2003 .

[62]  Laura Marcu,et al.  Calcium bursts induced by nanosecond electric pulses. , 2003, Biochemical and biophysical research communications.

[63]  Wanda Krassowska,et al.  Model of creation and evolution of stable electropores for DNA delivery. , 2004, Biophysical journal.

[64]  H. Tien,et al.  Planar lipid bilayers (BLMs) and their appilcations , 2003 .

[65]  Steve W. Smye,et al.  Membrane electroporation theories: a review , 2006, Medical and Biological Engineering and Computing.

[66]  M. B. Pinto,et al.  Optimized δ expansion for relativistic nuclear models , 1997, nucl-th/9709049.