De Novo Design of a New Class of "Hard-Soft" Amorphous, Microphase-Separated, Polyolefin Block Copolymer Thermoplastic Elastomers.

Sequential cyclic/linear/cyclic living coordination polymerization of 1,6-heptadiene (HPD), propene, and HPD, respectively, employing the well-defined and soluble group 4 transition-metal initiator, {(η5-C5Me5)Hf(Me)[N(Et)C(Me)N(Et)]}[B(C6F5)4], provides the stereoirregular, amorphous poly(1,3-methylenecyclohexane)-b-atactic polypropene-b-poly(1,3-methylenecyclohexane) (PMCH-b-aPP-b-PMCH) polyolefin triblock copolymer (I) in excellent yield. By varying the weight fraction of the end group, minor component "hard" PMCH block domains, fPMCH, relative to that of the midblock "soft" aPP domain, three different compositional grades of these polyolefin block copolymers, Ia-c, were prepared and shown by AFM and TEM to adopt microphase-separated morphologies in the solid state, with spherical and cylindrical morphologies being observed for fPMCH = 0.09 (Ia) and 0.23 (Ic), respectively, and a third more complex morphology being observed for Ib (fPMCH = 0.17). Tensile testing of Ia-c served to establish these materials as a new structural class of polyolefin thermoplastic elastomers, with Ia being associated with superior elastic recovery (94 ± 1%) after each of several stress-strain cycles.

[1]  Shiping Zhu,et al.  Elastomeric properties of ethylene/1-octene random and block copolymers synthesized from living coordination polymerization , 2015 .

[2]  F. Bertini,et al.  Ni(II) α-Diimine-Catalyzed α-Olefins Polymerization: Thermoplastic Elastomers of Block Copolymers , 2015 .

[3]  Kaitlyn E. Crawford,et al.  Regio- and Stereospecific Cyclopolymerization of Bis(2-propenyl)diorganosilanes and the Two-State Stereoengineering of 3,5-cis,isotactic Poly(3,5-methylene-1-silacyclohexane)s. , 2014, ACS macro letters.

[4]  H. Saito,et al.  Mechanical properties and microphase structure of hydrogenated S-SB-S triblock copolymers , 2013 .

[5]  Kaitlyn E. Crawford,et al.  Stereoengineering of poly(1,3-methylenecyclohexane) via two-state living coordination polymerization of 1,6-heptadiene. , 2013, Journal of the American Chemical Society.

[6]  T. Nishi,et al.  Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions , 2012 .

[7]  A. Hotta,et al.  Stress-strain behavior, elastic recovery, fracture points, and time-temperature superposition of an oot-possessing triblock copolymer , 2011 .

[8]  Wei Zhang,et al.  Synthesis Characterization and Electrospinning of Architecturally-Discrete Isotactic-Atactic-Isotactic Triblock Stereoblock Polypropene Elastomers , 2011 .

[9]  R. Register,et al.  Thermoplastic elastomers with composite crystalline-glassy hard domains and single-phase melts , 2010 .

[10]  R. Register,et al.  Extensibility and Recovery in a Crystalline-Rubbery-Crystalline Triblock Copolymer , 2009 .

[11]  I. Hamley,et al.  Effect of Stretching on the Structure of Cylinder- and Sphere-Forming Styrene―Isoprene―Styrene Block Copolymers , 2009 .

[12]  Lawrence R Sita,et al.  Ex uno plures ("out of one, many"): new paradigms for expanding the range of polyolefins through reversible group transfers. , 2009, Angewandte Chemie.

[13]  E. Kramer,et al.  Semicrystalline thermoplastic elastomeric polyolefins: Advances through catalyst development and macromolecular design , 2006, Proceedings of the National Academy of Sciences.

[14]  P. Hustad,et al.  Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization , 2006, Science.

[15]  L. Sita,et al.  Discrete, multiblock isotactic-atactic stereoblock polypropene microstructures of differing block architectures through programmable stereomodulated living Ziegler-Natta polymerization. , 2006, Angewandte Chemie.

[16]  R. Register,et al.  Properties of Well-Defined Elastomeric Poly(alkylnorbornene)s and Their Hydrogenated Derivatives , 2005 .

[17]  F. Bates,et al.  High Strength Polyolefin Block Copolymers , 2004 .

[18]  Amy C. Gottfried,et al.  Living and Block Copolymerization of Ethylene and α-Olefins Using Palladium(II)−α-Diimine Catalysts , 2003 .

[19]  John Scheirs,et al.  Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers , 2003 .

[20]  G. Coates,et al.  Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry. , 2002, Angewandte Chemie.

[21]  R. Register,et al.  Steady-shear rheology of block copolymer melts and concentrated solutions: Defect-mediated flow at low stresses in body-centered-cubic systems , 2002 .

[22]  G. Coates,et al.  A new catalyst for highly syndiospecific living olefin polymerization: homopolymers and block copolymers from ethylene and propylene. , 2001, Journal of the American Chemical Society.

[23]  M. Kol,et al.  Isospecific Living Polymerization of 1-Hexene by a Readily Available Nonmetallocene C2-Symmetrical Zirconium Catalyst , 2000 .

[24]  A. Henningsen,et al.  Living Ziegler−Natta Cyclopolymerization of Nonconjugated Dienes: New Classes of Microphase-Separated Polyolefin Block Copolymers via a Tandem Polymerization/Cyclopolymerization Strategy , 2000 .

[25]  Ryan,et al.  Polymer crystallization in 25-nm spheres , 2000, Physical review letters.

[26]  L. Sita,et al.  Stereospecific Living Ziegler−Natta Polymerization of 1-Hexene , 2000 .

[27]  Nikos Hadjichristidis,et al.  Mechanical Properties and Deformation Behavior of the Double Gyroid Phase in Unoriented Thermoplastic Elastomers , 1999 .

[28]  R. Register,et al.  Interaction strengths in styrene-diene block copolymers and their hydrogenated derivatives , 1998 .

[29]  W. M. Davis,et al.  Synthesis of Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligand, [((t-Bu-d6)N-o-C6H4)2O]2- ([NON]2-) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2 , 1997 .

[30]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[31]  J. Rabe,et al.  Surface reconstruction of the Lamellar Morphology in a symmetric poly(styrene-block-butadiene-block-methyl methacrylate) triblock copolymer : A tapping mode scanning force microscope study , 1996 .

[32]  E. Thomas,et al.  Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems , 1996 .

[33]  D. H. Mcconville,et al.  Polymerization of α-olefins by chelating diamide complexes of titanium , 1996 .

[34]  S. Gruner,et al.  Orientation of triblock copolymers in planar extension , 1996 .

[35]  M. V. Dijk,et al.  Ordering Phenomena in Thin Block Copolymer Films Studied Using Atomic Force Microscopy , 1995 .

[36]  F. Bates,et al.  Heterogeneous catalytic hydrogenation of polystyrene: thermodynamics of poly(vinylcyclohexane)-containing diblock copolymers , 1993 .

[37]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[38]  Y. Doi,et al.  Living coordination polymerization of propene with a highly active vanadium-based catalyst , 1986 .

[39]  Edwin L. Thomas,et al.  Hard-sphere interactions between spherical domains in diblock copolymers , 1984 .

[40]  J. Prud'homme,et al.  Deformation mechanism of thermoplastic two-phase elastomers of lamellar morphology having a high volume fraction of rubbery microphase , 1981 .

[41]  A. Keller,et al.  Deformation behavior of an S‐B‐S copolymer , 1977 .

[42]  H. Kawai,et al.  Deformation Mechanism of Elastomeric Block Copolymers Having Spherical Domains of Hard Segments under Uniaxial Tensile Stress , 1971 .